

User Guide
September, 2005


One Century Tower, 265 Church Street
New Haven, CT 06510-7010 USA


203-777-7442 fax 203-776-4074 lsupport@LindaSpaces.com







The software described in this manual is distributed under license from Scientific Computing Associ-
ates, Inc. (SCAI). Your license agreement specifies the permitted and prohibited uses of this software. 
Any unauthorized duplication or use of Linda®, TCP Linda®, or the Linda CDS in whole or in part, in 
print, or in any other storage or retrieval system is prohibited.


The Linda software is provided “as is” without warranty of any kind, either expressed or implied, re-
garding the software package, its merchantability, or its fitness for any particular purpose. While the in-
formation in this manual has been carefully checked, SCIENTIFIC cannot be responsible for errors and 
reserves the right to change the specifications of the software without notice.


The Linda software is Copyright © 1988-2005, SCIENTIFIC Computing Associates, Inc. This manual 
is Copyright © 1989-2005, SCIENTIFIC Computing Associates, Inc. All rights reserved.


Linda is a registered trademark SCIENTIFIC Computing Associates, Inc.
Tuplescope is a trademark of Yale University.
UNIX is a registered trademark of AT&T.
The X Window System is a trademark of MIT.
All other trademarks and registered trademarks are property of their respective holders.


Manual version: 7.0
Corresponds to TCP Linda version 7.0
September, 2005


Printed in the U.S.A.







Acknowledgments


Many Linda users and developers have contributed to the direction and quality of both the 
Linda products and this documentation. In particular, we’d like to give special thanks to 
Harry Dolan, Kevin Dowd, and Joe Casper of United Technologies Research Center, who 
produced the Linda version of the Freewake program described in Chapter 2, and T. Alan 
Egolf, the author of Freewake; Craig Kolb, the developer of the Rayshade program described 
in Chapter 3; Mark A. Shifman, Andreas Windemuth, Klaus Schulten, and Perry L. Miller, the 
developers of the Molecular Dynamics program described in Chapter 3; Paul Bercovitz, who 
created the original version of the Tuplescope debugger described in Chapter 5; and Donald 
Berndt and Steven Ericsson Zenith, authors of previous Linda manuals for SCIENTIFIC.











Linda User Guide i


Contents
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1


How to Use this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
About the Example Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Typographic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3


1 Overview of Parallel Programming and the Linda Model. . . . . . . 5
Approaches to Parallel Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7


Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Distributed Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8


The Linda Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
How and Where to Parallelize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14


2 Using the Linda Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Quick Start: Hello, world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17


Compiling and Running the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
C-Linda Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Fortran-Linda Compilation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20


Linda Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
eval  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22


eval’s Inherited Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
eval Function Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24


Predicate Operation Forms: inp and rdp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
C-Linda Alternate Operation Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26


Specifying Tuples and Basic Tuple Matching Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Formal Tuple Matching Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28


Avoiding Array Copies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pointers and Assumed-Size Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Multidimensional Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Fortran 90 Array Sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33


Fortran Named Common Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
C Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34


Varying-Length Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
C Character Strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Anonymous Formals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Fixed Aggregates in C  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36


Termination of Linda Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Example: Freewake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38







ii Contents


3 Using TCP Linda  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
What ntsnet Does  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Using the ntsnet Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Customizing Network Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45


ntsnet Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Resource Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Determining Which Nodes a Program Will Run On. . . . . . . . . . . . . . . . . . . . . . . . . . . 50


Specifying Execution Priority  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
How ntsnet Finds Executables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51


About Map Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
The Map Translation File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53


Map Translation Entry Wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Distributing Executables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Architecture–Specific Suffixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Specifying the Working Directory for Each Node . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Permissions and Security Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61


ntsnet Worker Process Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Forming The Execution Group  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Selecting Nodes for Workers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63


Special Purpose Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Tuple Redirection Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Disabling Global Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Generating Additional Status Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Process Initiation Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67


Appropriate Granularity for Network Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Forcing an eval to a Specific Node or System Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Debugging TCP Linda Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69


ntsnet’s Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Hints on running TCP Linda programs in Debug Mode. . . . . . . . . . . . . . . . . . . . . . 70
Running TCP Linda Programs Without ntsnet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71


4 Case Studies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Ray Tracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Database Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Molecular Dynamics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86


5 Using Tuplescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Program Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95


Invoking Tuplescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
The Tuplescope Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96


The Control Panel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Tuple Class Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97







Linda User Guide iii


Viewing Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Viewing Process Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99


Tuplescope Run Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Using Tuplescope with a Native Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
The Tuplescope Debugging Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101


TDL Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101


6 Linda Usage and Syntax Summary . . . . . . . . . . . . . . . . . . . . . . 105
Linda Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105


Formal C-Linda Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Timing Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
The clc and flc Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107


Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Command Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110


The ntsnet Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Options Syntax Convention  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Command Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111


ntsnet Configuration File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Resource Definition Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116


Map Translation File Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Tuplescope Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123


Menu Buttons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
The Modes Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
The Debug Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124


TDL Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124


7 Sample Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Array Assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127


Serial Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Parallel Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128


pi Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Serial Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Parallel Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134


Matrix Multiply  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Serial Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Parallel Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138


Concurrent Wave Equation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Serial Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Parallel Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145







iv Contents


2D Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Serial Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Parallel Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152


Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i


Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i







Linda User Guide 1


Introduction


This manual describes the Linda® product family—TCP Linda, the Linda Code 
Development System (CDS), and Shared Memory Linda (SM Linda). The Linda product 
family are parallel programming languages based on the C and Fortran languages that 
enable users to create parallel programs that perform well in a wide range of computing 
environments.


This manual includes examples of using both the C-based and Fortran-based Linda 
products and refers to them as "C-Linda" and "Fortran-Linda." C-Linda combines the 
coordination language Linda with the programming language C; similarly, Fortran-Linda 
combines the coordination language Linda with the Fortran programming language. 
Parallel programs are created with Linda by combining a number of independent 
computations (processes) into a single parallel program. The separate computations are 
written in C or Fortran, and Linda provides the glue that binds them together. 


Linda has several characteristics which set it apart from other parallel programming 
environments:


Linda augments the serial programming language (C or Fortran). It does not 
replace it, nor make it obsolete. In this way, Linda builds on investments in 
existing programs.


Linda parallel programs are portable, and they run on a large variety of parallel 
computer systems, including shared-memory computers, distributed memory 
computers, clusters, and networks of computers. With few exceptions, Linda 
programs written for one environment run without change on another. 


Linda is easy to use. Conceptually, Linda implements parallelism via a logically 
global memory (virtual shared memory), called tuple space, and a small number of 
simple but powerful operations on it. Tuple space and the operations that act on 
it are easy to understand and quickly mastered. In addition, the C-Linda and 
Fortran-Linda compilers support all of the usual program development features, 
including compile-time error checking and runtime debugging and visualization.


How to Use this Manual


If you are new to parallel programming, Chapter 1: Overview of Parallel Programming 
and the Linda Model, provides a general introduction to the subject and to Linda. It also 
introduces tuple space, the Linda operations, and other essential concepts.







2 Introduction


For a more in depth look at parallel programming and algorithm development, 
SCIENTIFIC recommends the book, How to Write Parallel Programs: A First Course, by 
Nicholas Carriero and David Gelernter, which is available in PDF format at no cost on 
the SCAI Website at www.lindaspaces.com. See the Bibliography for the complete 
citation for this book and related works.


If you are using Linda to create parallel programs, Chapter 2: Using the Linda 
Operations, describes the Linda operations in detail. It explains the program compilation 
and execution process, provides a couple of simple example programs, and includes an 
extended discussion of tuple-matching rules and restrictions.


If you are using TCP Linda, Chapter 3: Using TCP Linda, describes the special features 
and considerations of the Linda implementation for networks of UNIX workstations. 
The first section provides an introduction and “quick start” for new users of TCP Linda. 
The remainder of the chapter describes the general features of TCP Linda.


To see examples of using Linda with the C and Fortran programming languages, Chapter 
4: Case Studies, presents several extended program examples illustrating the process of 
transforming a sequential program into a parallel program with Linda.


Chapter 5: Using Tuplescope, describes the Tuplescope visualization and debugging tool 
and the Linda Code Development System (CDS) and how to use them for high-level 
debugging of Linda programs running on a single node.


Chapter 6:  Linda Usage and Syntax Summary, provides a programmer’s reference to the 
features of the Linda programming environment, including both C-Linda and 
Fortran-Linda language constructs and the elements of the Linda Toolkit.


Chapter 7:  Sample Programs, contains five sets of example programs that demonstrate 
how to use Linda to parallelize serial programs. Each example includes the serial version 
of a program written in C and a parallel version created with Linda. The examples are 
presented in order of increasing complexity.


The Bibliography lists books and articles that may be of interest to Linda users. Some 
items provide more advanced treatment of parallel programming techniques, while others 
discuss the example programs in greater detail or from different perspectives.


About the Example Programs


The chapters in this guide that describe using Linda include many code samples and 
fragments as examples. All of this code is derived from real programs, but in most cases 
has been shortened and simplified, usually to make it fit into the allowed space. Typically, 
declarations and preprocessor directives are omitted except when they are vital to 
understanding the program. Also, sections of code that are not relevant to the point 
being made are replaced often by a one-line summary of their function (set in italics). 
Blank lines (without initial comment indicator) have been inserted into Fortran programs 
for readability. Therefore, although the code examples are derived from real programs, 
they do not generally constitute "working" code. Many examples are provided in both C 
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and Fortran versions; differences between the two languages are highlighted in the text 
where appropriate. For examples of "working code," see the chapter, Sample Programs 
on page 127.


Typographic Conventions


Fixed-width type is used for all code examples, whether set off in their own 
paragraphs or included within the main text. For example, variable names and filenames 
referred to within the text are set in fixed-width type. 


Boldface fixed-width type is used in examples to indicate text—usually commands 
to the operating system—typed by the user.


Italic type is used for replaceable arguments in operation and command definitions, for 
summary lines and other descriptions within example code, and occasionally for 
emphasis.


Boldface sans-serif type is used for Linda operation names used in a generic way within 
normal text, for non-varying text within syntax definitions, and for menu buttons and 
other controls in The Tuplescope Display.


Italic sans-serif type is used for replaceable arguments within formal syntax definitions and 
when they are referred to within the text.







4 Introduction







Linda User Guide 5


1
Overview of Parallel Programming and


the Linda Model


People always are trying to make programs run faster. One way to do so is to divide the 
work the program must do into pieces that can be worked on at the same time (on 
different processors). More formally, creating a parallel program depends on finding 
independent computations that can be executed simultaneously. 


Producing a parallel program generally involves three steps:


Developing and debugging a sequential program. For existing programs, this step 
is already done.
Transforming the sequential program into a parallel program.
Optimizing the parallel program.


Of course, if the second step is done perfectly then the third one will be unnecessary, but 
in practice that rarely happens. It’s usually much easier—and quicker in the long run—to 
transform the serial program into a parallel program in the most straightforward way 
possible, measure its performance, and then search for ways to improve it. 


If we focus on step 2, a natural question arises: where does the parallelism come from? 
The language of parallel programming can be quite ambiguous. On the one hand, there is 
talk of "parallelizing programs," a phrase which focuses on the programmers who 
convert sequential programs into parallel ones. On the other hand, much is said about 
"exploiting parallelism," implying that parallelism is already inherent in the program itself. 
Which is correct? Is it something you find or something you create?


The answer is, of course, "it depends." Sometimes a program can be trivially adapted to 
run in parallel because the work it does naturally divides into discrete chunks. Sometimes 
a serial program must be restructured significantly in order to transform it into a parallel 
program, reorganizing the computations the program does into units which can be run in 
parallel. And sometimes an existing program will yield little in the way of independent 
computations. In this case, it is necessary to rethink the approach to the problem that the 
program addresses, that is create new algorithms to formulate a solution which can be 
implemented as a parallel program.†


† Of course, even in these cases, it may still be possible to take advantage of a parallel computer 
by running multiple concurrent sequential jobs.
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To put it another way, a computer program doesn’t merely solve a particular problem, 
but rather it embodies a particular approach to solving its specific problem. Making a 
parallel version potentially can involve changes to the program structure, or the 
algorithms it implements, or both. The examples in this manual include instances of all 
three possibilities.


Once the work has been divided into pieces, yielding a parallel program, another factor 
comes into play, the inherent cost associated with parallelism, specifically the additional 
effort of constructing and coordinating the separate program parts. This overhead often 
is dominated by the communication between discrete program processes, and it increases 
naturally with the number of chunks the program is divided into, eventually reaching a 
point of diminishing return in which the cost of creating and maintaining the separate 
execution threads overshadows the performance gains realized from their parallel 
execution. An efficient parallel program will maximize the ratio of work proceeding in 
parallel to the overhead associated with its parallel execution. 


This ratio of computation to communication is referred to as granularity. Think of 
dividing a rock into roughly equal-sized parts. There are many ways to do it; in fact, there 
is a continuum of possibilities ranging from fine grains of sand at one end to two rocks 
half the size of the original at the other. A parallel program that divides the work into 
many tiny tasks is said to be fine-grained, while one that divides the work into a small 
number of relatively large ones is called coarse-grained.


There is no absolute correct level of granularity. Neither coarse-grained nor fine-grained 
parallelism is inherently better or worse than the other. However, when overhead 
overwhelms computation, a program is too fine grained for its environment, whatever its 
absolute granularity level may be. The optimum level depends on both the algorithms a 
program implements and the hardware environment it runs in. A level of granularity that 
runs efficiently in one environment (for example, a parallel computer with very fast 
interprocessor communication channels) may not perform as well in another (such as a 
network of workstations with much slower communication between processors). 


There are two ways to address this issue (and we’ll look at examples of both of them in 
the course of this manual). First, many problems offer a choice of granularity level. For 
example, if a program must execute eight independent matrix multiply operations, a 
parallel program could perform all eight of them at the same time, or execute eight 
parallel matrix multiplication operations one after another. Which approach is correct 
depends on the structure of the overall problem, and each is better than the other in 
some circumstances. 


The other solution is to build adjustable granularity into programs so that they can be 
easily modified for different environments. Changing the granularity level then becomes 
as simple as changing a few parameter definitions. This technique complements the 
preceding one, and both can be used in the same program.


These are the major issues facing any parallel programmer. In the next section we’ll look 
at three different approaches to creating parallel programs and indicate how Linda is 
situated with respect to each of them.







Approaches to Parallel Programming


Linda User Guide 7


Approaches to Parallel Programming


There are two main challenges facing any parallel programmer:


How to divide the work among the available processors.‡


Where to store the data and how to get it to processors that need it.


Two radically different approaches to these problems have emerged as the dominant 
parallel processing paradigms. They are message passing and distributed data structures 
implemented in virtual shared memory.


Message Passing
Message passing focuses on the separate processes used to complete the overall 
computation. In this scheme, many concurrent processes are created, and all of the data 
involved in the calculation is distributed among them in some way. There is no shared 
data. When a process needs data held by another one, the second process must send it to 
the first one.


For example, let’s again consider a matrix multiplication calculation: 


A * B = C


A message passing version might create many processes, each responsible for computing 
one row of the output matrix C. If the matrices are large enough, it might not be possible 
for each process to hold all of B at once. In this case, each process might then hold the 
row of A, corresponding to its output row, and, at any given time, one column of B. The 
process computes the dot product of its row and the column it currently holds, 
producing one element of its output row. When it finishes with one column, it sends it on 
to another process, and receives a new column from some process. Once all processes 
have received all the columns of B and have finished their final dot product, the matrix 
multiplication is complete (although the completed rows would still need to be explicitly 
moved from the component processors to the desired output location).


The message passing approach to the problem is illustrated in the diagram below. It has a 
number of implications for the programmer. First, the program needs to keep track of 
which process has what data at all times. Second, explicit send data and receive data 
operations must be executed whenever data needs to move from one process to another. 
Unless they are coded extremely carefully, such bookkeeping and communication 
activities can cause bottlenecks in program execution.


‡ The term processor is used in a generic sense here to designate a distinct computational resource 
whether it is one CPU in a multiprocessor computer or a separate computer on a network.
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Distributed Data Structures
Distributed data structure programs are a second approach to parallel programming. This 
method decouples the data required for the calculation and the distinct 
simultaneously-executing processes which each perform a part of it, making them 
autonomous. Distributed data structure programs use a shared data space, with the 
individual processes reading data from it and placing results into it. The data structure is 
distributed in the sense that different parts of it can reside in different processors, but it 
looks like one single global memory space to the component processes. In this sense, a 
distributed data structure might be termed virtual shared memory (VSM). Although 
Linda can be used to implement both types of parallel programs, the most natural one for 
use with Linda is the distributed data structures using virtual shared memory.


All interprocess communication is accomplished via this global data space. Processes 
never explicitly send messages to one another, but rather place data into the shared data 
space. When another process needs that data, it obtains it from the shared data space. 
Linda handles all data transfer operations, so the program need not worry about the exact 
mechanism by which it occurs. Linda operations require no additional overhead over any 
message passing scheme, and in fact sometimes are more efficient!


Programs using the distributed data structure method often use a master/worker 
computation strategy. Under this approach, the total work to be done by the program is 
broken into a number of discrete tasks which are stored in the global data space. One 
process, known as the master, is responsible for generating the tasks and gathering and 
processing the results. Actual program execution involves a number of component 
processes known as workers. Each worker removes a task, completes it, and then grabs 
another, continuing until some condition is met. For example, it may encounter a special 
type of task—known as a poison pill—telling it to die, or it may be terminated by some 
other mechanism. Depending on the situation, the master process may also perform task 
computations in addition to its other duties.


Process  i-1


C i-1


B j-1A i-1


receive send receive


Process  i


C i


B jA i


Process  i+1


C i+1


B j+1A i+1


send receive send


Message Passing Matrix Multiplication
In message passing parallel programs, there is no global data. All data is always held by some process and must be 
explicitly sent to other processes that need it. Here each process holds one row of A and computes one element of C while 
it has the corresponding column of B. The columns of B are passed from process to process to complete the computation.







Approaches to Parallel Programming


Linda User Guide 9


Note that the tasks and workers are also independent of one another. The total work is 
not split among the workers; rather, the total work is split into a number of chunks, and 
each worker performs task after task until the entire job is done. In this case, it is the task 
size, and not merely the number of workers, that primarily determines the granularity of 
the program, and this granularity can be adjusted by varying the task size.


If we look again at our matrix multiplication example, each task might consist of 
computing some part of the output matrix C. At the beginning of the program, the 
master process creates tasks for each chunk of C that is to be computed separately. Each 
worker removes a task from the shared data space. It then reads the required rows of A 
and columns of B (if necessary), and forms the dot products. When it is finished, it places 
the resulting chunk of C into the shared data space, and at the conclusion of the program, 
the master gathers up all the chunks of C. The granularity of the calculation can be 
adjusted by varying the amount of C that each task computes. This approach to the 
problem is illustrated in the preceding diagram.


Notice once again the distinction between tasks and workers. In this example, the 
elements of C to be computed are divided into groups, and each task consists of 
computing one of the groups. The elements of C are not divided among the worker 


Shared Data Space


Tasks


Worker Processes


A


B


C


Worker reads
required data


Worker sends results


Distributed Data Structures Matrix Multiplication
In a distributed data structures parallel program, workers retrieve tasks from the shared data space, complete them, and then 
repeat the process until all tasks are done. Here each task is to compute a portion of the result matrix C. Each worker reads the 
data it needs for its current task—here the relevant portions of A and B—from the global data space, and places its results there 
when finished as well. The master process, which generated the tasks and placed them into the shared data space, also eventually 
gathers the results placed there by the worker processes.
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processes in any explicit way. Worker processes do not know what tasks they will 
perform when they are created. Workers acquire tasks as they are ready, and perform 
whatever task they get. 


This approach has many benefits. For one thing, it is generally easy to code, since the 
worker processes don’t need to worry about explicit interprocess communication; that is 
taken care of by the parallel programming environment, which manages the shared data 
space. Processes read and write data via Linda’s operations. In addition, this method also 
tends to be naturally load balancing. Workers continually execute tasks as long as any of 
them remain. If one worker runs on a faster processor than some others, it will finish 
each task more quickly and do proportionately more of them. (Of course, there are times 
when reality isn’t quite this simple, so we’ll look at some techniques to ensure good load 
balancing in Chapter 3.)


The Linda Model


Linda—or more precisely, the Linda model—is a general model of parallel computing 
based on distributed data structures (although as we’ve noted before, it can be used to 
implement message passing as well). Linda calls the shared data space tuple space. C-Linda 
is an implementation of the Linda model using the C programming language, and 
Fortran-Linda is an implementation of the Linda model using the Fortran programming 
language. Processes access tuple space via a small number of operations that Linda 
provides. For example, parallel programs using C-Linda are written in C and incorporate 
these operations as necessary to access tuple space. In this way, C-Linda functions as a 
coordination language, providing the tools and environment necessary to combine 
distinct processes into a complete parallel program. The parallel operations in C-Linda 
are orthogonal to C, providing complementary capabilities necessary to parallel programs. 
C-Linda programs make full use of standard C for computation and other non-parallel 
tasks; C-Linda enables these sequential operations to be divided among the available 
processors. Since C-Linda is implemented as a precompiler, C-Linda programs are 
essentially independent of the particular (native) C compiler used for final compilation 
and linking. Fortran-Linda operates in an analogous manner.


Linda programmers don’t need to worry about how tuple space is set up, where it is 
physically located, or how data moves between it and running processes; all of this is 
managed by the Linda software system. Because of this, Linda is logically independent of 
system architecture, and Linda programs are portable across different architectures, 
whether they’re shared memory computers, distributed memory computers, or networks 
of workstations. 


Data moves to and from tuple space as tuples.†† Tuples are the data structures of tuple 
space. A tuple is a sequence of up to 16 typed fields; it is represented by a 
comma-separated list of items enclosed in parentheses. Here is a simple example:


C Form Fortran Form
("simple", 1) ('simple', 1)


†† Pronounced “two-pull” with the emphasis on the first syllable.
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This tuple has two fields; the first is a character string, and the second is an integer, and in 
this case, both of them contain literal values. Variables may also be used in tuples:


C Form Fortran Form
("easy", i) ('easy', i)


This tuple also has a string as its first field, and a second field of whatever type the 
variable i is. The value in the second field is i’s current value. 


Linda provides four operations for accessing tuple space (plus two variant forms 
described in Predicate Operation Forms: inp and rdp on page 25):


Operation Action
out Places a data tuple in tuple space.
eval Creates a live tuple (usually starting new process(es)).
in Removes a tuple from tuple space.
rd Reads the values in a tuple in tuple space, leaving the tuple there.


For example, this out operation places a data tuple with one string and two integer fields 
into tuple space:


C Form Fortran Form
out("cube", 4, 64); out('cube', 4, 64)


There are two kinds of tuples: data tuples (also called passive tuples), like those we’ve looked 
at so far, which contain static data, and process tuples, also known as live tuples, which are 
under active evaluation. 


An eval operation creates a process tuple consisting of the fields specified as its argument 
and then returns. This process tuple implicitly creates a process to evaluate each 
argument. Actual implementations create a process only for arguments consisting of a 
simple function call (and fulfilling some other conditions which we’ll note later); all other 
fields in the eval are evaluated sequentially.


While the processes run, the eval’s tuple is referred to as a live tuple; as each process 
completes, its return value is placed into the corresponding field, and once all fields are 
filled—all processes have completed—the resulting data tuple is placed into tuple space. 
While it is not literally true that an eval creates the processes that evaluate its arguments, 
it can be helpful to think of it this way.


For example, this eval statement will result in a process being created to evaluate its third 
argument, f(i):


C Form Fortran Form
eval("test", i, f(i)); eval('test', i, f(i))


evals are often used to initiate worker processes, as in the following loop:
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C Form Fortran Form
for (i=0;i < NWORKERS;i++) Do 5 I=1,NWORKERS


eval("worker", worker()); eval('worker', worker())
5 Continue


This loop starts NWORKERS worker processes. In this case, the primary function of the 
eval is simply to start the process, rather than to perform a computation and place the 
result into tuple space. Formally, however, when each worker finishes, a tuple of the 
form:


C Form Fortran Form
("worker", 0) ('worker', 0)


is placed into tuple space (assuming that the workers terminate normally and adhere to 
the usual UNIX return value convention of zero for success).


The other two operations allow a process to access the data in tuple space. A rd operation 
reads a tuple from tuple space, and an in operation removes a tuple from tuple space.


Both rd and in take a template‡‡ as their argument. A template specifies what sort of tuple 
to retrieve. Like tuples, templates consist of a sequence of typed fields, some of which 
hold values (such fields are known as actuals)—either constants or expressions which 
resolve to constants—and some of which hold placeholders for the data in the 
corresponding field of the matched tuple in tuple space. These placeholders begin with a 
question mark and are known as formals. When a matching tuple is found, variables used 
as formals in the template will be assigned the values in corresponding fields of the 
matched tuple.


Here is an example:


C Form Fortran Form
("simple", ?i) ('simple', ?i)


In this template, the first field is an actual, and the second field is a formal. If this 
template is used as the argument to a rd operation, and a matching tuple is found, then 
the variable i will be assigned the value in the second field of the matched tuple.


A template matches a tuple when:


They both have the same number of fields.
The types, values, and length of all actuals (literal values) in the template are the 
same as the those of the corresponding fields in the tuple.
The types and lengths of all formals in the template match the types and lengths 
of the corresponding fields in the tuple. 


We’ll consider these conditions in more detail in Chapter 2; for now, let’s look at some 
examples. If the tuple:


‡‡ Also known as an anti-tuple.
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C Form Fortran Form
("cube", 8, 512) ('cube', 8, 512)


is in tuple space, then the statement:


C Form Fortran Form
rd("cube", 8, ?i); rd('cube', 8, ?i)


will match it and assign the value 512 to i, assuming that i is an integer. Similarly, if j is 
an integer variable equal to 8, then the statement:


C Form Fortran Form
in("cube", j, ?i); in('cube',j, ?i)


will match it (again if i is an integer), assign the value 512 to i, and remove the tuple 
from tuple space.


If more than one matching tuple for a template is present in tuple space, one of the 
matching tuples will be used. Which one is non-deterministic; it will not necessarily be the 
oldest, the most recent, or a tuple specified by any other criteria. Programs must be 
prepared to accept any matching tuple, and to receive equivalent tuples in any order. 
Similarly, repeated rd operations will often yield the same tuple each time if the tuples in 
tuple space remain unchanged.


If no matching tuple is present in tuple space, then both rd and in will wait until one 
appears; this is called blocking. The routine that called them will pause, waiting for them to 
return.


Note that the direction of data movement for the in and out operations is from the point 
of view of the process calling them and not from the point of view of tuple space. Thus, 
an out places data into tuple space, and an in retrieves data from it. This is similar to the 
general use of input and output in conventional programming languages.


All data operations to and from tuple space occur in this way. Data is placed into tuple 
space as tuples, and data is read or retrieved from tuple space by matching a tuple to a 
template, not by, say, specifying a memory address or a position in a list. This 
characteristic defines tuple space as an associative memory model.


The examples so far have all used a string as the first element of the tuple. This is not 
required but is a good practice to adopt in most cases because it makes Linda programs 
more readable and easier to debug. It also helps the Linda compiler to easily separate 
tuples into discrete classes enabling more efficient matching.


The next chapter will look at more complicated tuples and tuple matching scenarios and 
will present some simple examples of parallel programs using Linda.
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How and Where to Parallelize


This section contains a short discussion of how to find the computational kernels in a 
program. It discusses the UNIX profiling utilities prof and gprof. The steps described 
here are independent of Linda and are usually done before parallelizing the program. 
They are designed to help you determine where to focus your efforts within the original 
application. This section by nature is introductory and brief; consult the relevant manual 
pages and related works in the Bibliography for more detailed discussions of these 
commands and profiling in general.


To use the UNIX profiling utilities, the -p (for prof) or -pg (for gprof) options must be 
included on the link command. Note that they are not needed for compilations, only for 
linking. For example, the following command prepares the program test24 for use with 
gprof:


$ cc -o test24 -pg test24.o


Then, you run the resulting executable in the normal manner. Doing so will create a file 
named mon.out (prof) or gmon.out (gprof) in the directory from which the program 
was executed. These files contain the profiling data obtained during the run. You then 
run prof or gprof on the output files.


There can be a lot of output from both of these commands. Among the most useful are 
the breakdown of time spent, the number of times each routine was called, and the call 
graph information (where each routine was called from). Here is an example of the first:


%time seconds cum % cum sec procedure(file)


29.2 235.9100 29.2 235.91 gaus3_ (gaus3.f)
24.6 198.5800 53.8 434.49 dgemm_mm_ (dgemm_mm.s)
13.0 105.1600 66.8 539.65 func3_ (func3.f)
9.1 73.2500 75.8 612.90 tria_ (tria.f)
8.0 64.8500 83.9 677.75 exp (exp.s)
7.2 58.5500 91.1 736.30 intarc_ (intarc.f)


...


This display shows the total amount and percentage of CPU time used by each routine, in 
decreasing order. In this program, 90% of the total execution time is spent in just 6 
routines, one of which is a matrix multiply library call. About 8% of the time is spent in 
calls to the exponential function.


The following display is an example of a call frequency table:


calls %calls cum% bytes procedure (file)


20547111 68.53 68.53 480 exp (exp.s)
768 0.00 68.54 17072 gaus3_ (gaus3.f) 


...
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This sort of display summarizes the number of times a given routine was called. Often, it 
is helpful to also know where a routine was called from. A call graph table will indicate 
this information. Here is an example:


called procedure #calls %calls from line calling proc(file)


exp 7557120 36.78 48 gaus3_ (gaus3.f)
3022848 14.71 63 gaus3_ (gaus3.f)
3022848 14.71 79 gaus3_ (gaus3.f)
3022848 14.71 95 gaus3_ (gaus3.f)
503808 2.45 143 gaus3_ (gaus3.f)
503808 2.45 127 gaus3_ (gaus3.f)
503808 2.45 111 gaus3_ (gaus3.f)
503808 2.45 159 gaus3_ (gaus3.f)
503808 2.45 175 gaus3_ (gaus3.f)
503808 2.45 191 gaus3_ (gaus3.f)


sqrt 1007616 15.03 111 func3_ (func3.f)
1007616 15.03 110 func3_ (func3.f)
1007616 15.03 108 func3_ (func3.f)
1007616 15.03 109 func3_ (func3.f)
503808 7.51 44 func3_ (func3.f)
503808 7.51 147 func3_ (func3.f)
503808 7.51 148 func3_ (func3.f)
503808 7.51 149 func3_ (func3.f)


...


Here we can easily see that the exponential function is called literally millions of times, all 
from within one routine. We would want to try to do some of those calls in parallel if 
they are independent.
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2
Using the Linda Operations


In the last chapter we discussed the process of creating parallel programs from a general 
point of view. We also introduced tuples and the main Linda operations. In this chapter 
we will look at them in more detail and in the context of complete, if simple, parallel 
programs. Note that this chapter contains examples of using both C-based and 
Fortran-based Linda, and it refers to them as "C-Linda" and "Fortran-Linda" 
respectively.


Quick Start: Hello, world


In this section we’ll construct a parallel version of the canonical first example program, 
hello_world. Here is the sequential version:


C: main()
{


printf("Hello, world\n");
}


Fortran: Program Hello_World
Print *, 'Hello, world'
End


It would be absurd to try to perform the "computation" done by this program in parallel, 
but we can create a parallel version where each worker process executes this program—
and says ''Hello, world''—at the same time. Here is a program that does so:


C: real_main(int argc,char *argv[])
{


int nworker, j, hello();
nworker=atoi(argv[1]);


for (j=0; j<nworker; j++) eval("worker", hello(j));
for (j=0; j<nworker; j++) in("done");
printf("hello_world is finished\n");


return(0);
}


Fortran: Subroutine real_main
Integer I, NProc
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Obtain number of workers & store in NProc
Do 10 I=1,NProc


eval('worker', hello(I))
10 Continue


Do 11 I=1,NProc
in('done')


11 Continue
Print *,'hello_world is finished'
Return
End


The first thing to notice about this program is its name and top-level structure: 
real_main for the C-Linda, which requires that the top level routine be given this name 
rather than the usual main. Similarly, the top-level Fortran-Linda routine is named 
real_main; note also that it is defined as a Subroutine, not as a Program.


The C-Linda program requires one command line argument: the number of worker 
processes to create (and to save space we’ve eliminated the code that checks whether or 
not it got a valid argument). There are a number of ways that the Fortran-Linda version 
could obtain the number of worker processes; we won’t dwell upon those possibilities at 
this point.


Next, the program’s first loop initiates nworker worker processes using the eval 
operation, each executing the function hello. Here is hello:


C: hello(int i)
{


printf("Hello, world from number %d\n",i);
out("done");
return(0);


}


Fortran: Subroutine Hello(ID)


Print *,'Hello, world from number ',ID
out('done')
Return
End


hello is only a minor variation of our original sequential program. It prints the ''Hello, 
world'' message along with the number it was passed from real_main (this integer 
serves as a sort of internal process number). Each message will look something like this:


Hello, world from number 3


The routine hello places a tuple containing the string ''done'' into tuple space just 
before exiting. These tuples are then gathered up by the master process—real_main—
in its second loop. This technique has the effect of forcing real_main to wait until all 
the worker processes have terminated before exiting itself, a recommended Linda 







Quick Start: Hello, world


Linda User Guide 19


programming practice. Each in operation removes one ''done'' tuple from tuple space, 
and it will block if none is currently present and wait until some worker finishes and 
sends its tuple there. 


This same effect could have been achieved by means of a counter tuple which each 
worker process increments as it finishes. In this case, real_main would create and 
initialize the counter:


C Version Fortran Version
out("counter", 0); out('counter', 0)


and each worker would update it as its last action:


C Version Fortran Version
in("counter", ?j); in('counter', ?J)
out("counter", j+1); out('counter', J+1)


These statements remove the counter from tuple space, assign the current value of its 
second field—the number of processes that have finished so far—to the variable j, and 
then increment it and place the tuple back into tuple space. Note that only one process 
can access the counter tuple at a time, and so some processes may have to wait for others 
to finish before they can terminate. In this case, the waiting time is minuscule, so for this 
program, the concern is a non-issue. However, in general it is best to avoid building 
unnecessary dependencies among processes into a program. 


With a counter tuple, the final loop in real_main would be replaced by the statement:


C Version Fortran Version
in("counter", nworker); in('counter', NProc)


real_main will block until the counter tuple’s second field has its final value, the 
number of worker processes. 


A third approach involves retrieving the final data tuples created after the eval’ed 
processes exit, for example:


C Version Fortran Version
in("worker",?retval); in('worker', ?iretval)


This allows the program to examine the return code from the function started by the eval 
operation. While it isn’t really necessary for a function as simple as hello, it is a 
technique that is quite useful in more complex programs.


Compiling and Running the Program
To run this program, you must first compile and link it. The C-Linda compiler has similar 
syntax to standard C compilers. Its name is clc, and its source files must have the 
extension .cl. Here is a clc command that would compile the program in the file 
hello_world.cl:
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C-Linda Compilation


$ clc -o hello_world hello_world.cl


The -o option has the same meaning as with other compilers, so this command would 
compile and link the source file hello_world.cl, creating the executable program 
hello_world.


The Fortran-Linda version of the program is created using the flc command, as shown 
below.


Fortran-Linda Compilation


$ flc -o hello_world hello_world.fl do_args.f


Note that the extension on the Fortran-Linda source file is .fl. As illustrated, additional 
source files (Linda and non-Linda alike) may also be included on a Linda compilation 
command line when appropriate.


Here is a sample run:


Program
Execution


$ hello_world 8
Hello, world from number 3.
Hello, world from number 1.
Hello, world from number 0.
Hello, world from number 4.
Hello, world from number 5.
Hello, world from number 2.
Hello, world from number 7.
Hello, world from number 6.
hello_world is finished.


It is to be expected that the messages from the various processes will display in 
non-numerical order since we’ve done nothing to force them to display sequentially. 
Linda programs are essentially asynchronous, and there is no guarantee that a particular 
process will execute before any other. Indeed, we would not want to do so, since we’re 
trying to achieve a simultaneously executing parallel version of hello_world.


To run on a network, the program is compiled and linked in essentially the same way, but 
running it requires using a slightly different command. For this version, we might want to 
add the node name to the output line from each worker:


C : gethostname(name,20);
printf("Hello, world from number %d running on %s.\n",i,name);


Shown below are the commands to create and run the modified program (C-Linda 
version is shown):
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Program
Execution with


TCP Linda


$ clc -o hello_world hello_world.cl
$ ntsnet hello_world 8
Hello, world from number 4 running on moliere.
Hello, world from number 2 running on ibsen.
Hello, world from number 0 running on cervantes.
Hello, world from number 7 running on sappho.
Hello, world from number 3 running on blake.
Hello, world from number 1 running on virgil.
Hello, world from number 6 running on leopardi.
Hello, world from number 5 running on goethe.
hello_world is finished.


The ntsnet command initiates a Linda program on a network. ntsnet and its 
configuration and options are described in detail in Using TCP Linda.


Linda Operations


This section describes the Linda operations we looked at in the previous chapter in more 
detail, including some simple examples. Additional examples are given in the next 
section, “Tuples and Tuple Matching.”


in
The in operation attempts to remove a tuple from tuple space by searching for a data 
tuple which matches the template specified as its argument. If no matching tuple is 
found, then the operation blocks, and the process executing the in suspends until one 
becomes available. If there are one or more matching tuples, then one of them is chosen 
arbitrarily. The matching tuple is removed from tuple space, and each formal in the 
template is set to the value of its corresponding field in the tuple.


For example, this in operation removes a tuple having the string “coord” as its first field 
and two other fields of the same type as the variables x and y from tuple space; it also 
assigns the values in the tuple’s second and third fields to x and y respectively:


C Version Fortran Version
in("coord", ?x, ?y); in('coord', ?x, ?y)


If no matching tuple exists in tuple space, then the operation will block. The following 
tuple searches for the same sort of tuple, but specifies that the value in its second field 
must match the current value of x:


C Version Fortran Version
in("coord", x, ?y); in('coord', x, ?y)


rd
The rd operation functions identically to in except that it does not remove the matching 
tuple from tuple space. For example, the following rd operation will attempt to match the 
same kind of tuple as in the examples with in, except that this time the value in the 
second field must be 3:
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C Version Fortran Version
rd("coord", 3, ?y); rd('coord', 3, ?y)


When the rd operation successfully matches a tuple, the value in its third field will be 
assigned to the variable y. The tuple will remain in tuple space, available for use by other 
processes.


out
The out operation adds a tuple to tuple space. Prior to adding it, out evaluates all of its 
fields, resolving them to actual values. out returns after the tuple has been added to tuple 
space.


For example, the following out operation places a “coord” tuple into tuple space:


C Version Fortran Version
out("coord", 3, 10); out('coord', 3, 10)


If any of the fields in an out operation contain expressions, they are evaluated before the 
tuple is placed into tuple space. For example, this out operation will compute the value of 
the function f with the argument x, and then place a tuple with that value in its third field 
into tuple space (the second field will of course contain the current value of x):


C Version Fortran Version
out("coord", x, f(x)); out('coord', x, f(x))


The evaluation order of the fields is not defined and cannot be relied upon. For example, 
in the following C-Linda out operation, x may or may not be incremented before it is 
used as the argument to the function f:


C Version Fortran Version
out("coord", x++, f(x)); out('coord', g(x), f(x))


Similarly, in the Fortran-Linda version, there is no way to determine which routine will be 
called first should both f and g modify x. 


These types of constructions should be avoided.


No specified action is taken if tuple space is full when an out operation attempts to place 
a tuple there. Current Linda implementations will abort execution and print a diagnostic 
message. Typically, such events are treated by programmers along the lines of a stack or 
heap overflow in conventional programming languages: the system is rebuilt with a larger 
tuple space. Future Linda versions may raise exception flags. Under TCP Linda, the size 
of tuple space is limited only by the total available virtual memory of all participating 
nodes.


eval
As we saw in the previous chapters, an eval operation creates a process tuple consisting 
of the fields specified as its argument and then returns. Here we’ll go into more detail 
about how that happens.
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Logically, the fields of an eval are evaluated concurrently by separate processes; evaling a 
five-field tuple implicitly creates five new processes. When every field has been evaluated, 
then the resulting data tuple is placed into tuple space.


In current Linda implementations, however, only expressions consisting of a single 
function call are evaluated within the live tuple and actually result in a new process. These 
functions can use only simple data types as their arguments and return values (see below). 
All other fields are evaluated sequentially before new processes are created.


Here is a typical eval statement:


C Version Fortran Version
eval("coord", x, f(x)); eval('coord', x, f(x))


This eval will ultimately result in the same data tuple as the out operation we looked at 
previously. However, in this case, the eval operation will return immediately, and a new 
process will evaluate f(x). By contrast, the out operation will not complete until the 
evaluation of f(x) is complete and it has placed the data tuple into tuple space.


Compare these two C-Linda loops:


Loop with out Loop with eval
for (i=0; i < 100; i++) for (i=0; i < 100; i++)


out("f_values", i, f(i)); eval("f_values", i, f(i));


The loop on the left will sequentially evaluate f(i) for the first 100 non-negative 
integers, placing a tuple into tuple space as each one completes. The loop on the right will 
create 100 concurrent processes to evaluate the function f for each i value. As each 
process finishes, the resulting data tuple will go into tuple space.


eval’s Inherited Environment


In C-Linda, the environment available to evaled functions consists solely of the bindings 
for explicitly named parameters to the function. Static and global initialized variables in 
the function are not currently reinitialized for the second and following evals and thus 
will have unpredictable values. The created process does not inherit the entire 
environment of its parent process. Thus, in the preceding eval example, the environment 
passed to the function f will include only the variable x. 


Under Fortran-Linda, created processes inherit only the environment present when the 
Linda program was initiated,† with no modifications due to execution of user code. In 
many implementations, this is achieved by saving a clean copy of the program image 
from which to clone new processes.


† Some distributed memory Linda systems satisfy these semantics exactly only when the number 
of evals does not exceed the number of processors.
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Consider the following program structure:


Block Data
Integer val
Common /params/val
Data val /5/
End


Subroutine real_main
Integer val
Common /params/ val


val = 1
Call f(3)
eval('worker', f(3))
...
Return
End


Subroutine F(I)
Integer val
Common /params/ val
...
Return
End


When subroutine f is invoked using the Call statement, the variable val will have the 
value 1, since that value was assigned just prior to the call. However, when the subroutine 
is invoked using the eval statement, the variable will have the value 5, since that was its 
initial value at the inception of the program.


eval Function Restrictions


evaled functions may have a maximum of 16 parameters, and both their parameters and 
return values must be of one of the following types:


C-Linda: int, long, short, char, float, double
Fortran-Linda: integer, real, double precision, logical


The first four C types can be optionally preceded by unsigned; the Fortran types may 
include a length specifier (e.g. real*4). Note that no arrays, structures, pointers, or 
unions are allowed as function arguments. Of course, data of these types can always be 
passed to a process through tuple space. 


The other fields in an eval are also limited to the data types in the preceding list plus 
string constants.
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Under Fortran-Linda, subprograms appearing in an eval statement can be either 
subroutines or functions. Subroutines are treated as if they were integer functions always 
returning the value 0. Functions must return values of type integer, logical, or double 
precision. Intrinsic functions may not be used in eval statements.


Predicate Operation Forms: inp and rdp
inp and rdp are predicate forms of in and rd respectively (that’s what the p stands for). 
They attempt to match the template specified as their argument to a tuple in tuple space 
in the same way as in and rd, and they perform the same actual-to-formal assignment 
when a matching tuple is available. As expected, inp removes the matching tuple from 
tuple space, while rdp does not. When either of them successfully matches a tuple, it 
returns a value of 1 in C and .TRUE. in Fortran.


If no matching tuple is available, inp and rdp will not block. Rather, they will return a 
value of 0 (C) or .FALSE. (Fortran) and exit. Using inp and rdp can complicate your 
program, because they tend to introduce timing dependencies and non-deterministic 
behavior that may not have been intended.


For example, consider the following C-Linda code fragments:


/* Master code */ 
real_main() 
{  


...
for (i=0; i<tasks; ++i) out("task", i);


out("tasks outed");
... 


}


/* Worker code */ 
worker() 
{   


...
rd("tasks outed");
while (inp("task", ?i)) 


do_task(i); 
}


Clearly, if the rd of the “tasks outed” tuple were omitted, the the worker code would be 
non-deterministic. It might get any number of tasks before the loop terminated, which is 
not the intent.  What is perhaps less clear is that the program is still non-deterministic even 
with the rd.  This is due to the fact that out is asynchronous. There is no guarantee that all 
of the task tuples will be in tuplespace before the “tasks outed” tuple arrives.


It is a far better programming practice to use a counter or semaphore tuple in situations 
where inp or rdp seems called for. Consider this C-Linda example:


if (rdp("globals", ?x, ?y, ?z)==0)
do_globals(x,y,z);
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If the “globals” tuple is not available in tuple space, then rdp returns 0 and the process 
computes the globals itself. Simply doing a rd would result in blocking if the “globals” 
tuple weren’t available, and recomputing them can be faster than waiting for them 
(although slower than reading them). The same effect can be accomplished via a tuple 
that can take on one of two values, for example:


("globals_ready", 0 or 1)


The master process outs this tuple with value 0 at the beginning of the program, and the 
process that computes the globals and sends that tuple to tuple space also ins this tuple 
and outs it again, changing its second field to 1. Then, the preceding code can be replaced 
by:


rd("globals_ready", ?i);
if (i)


rd("globals", ?x, ?y, ?z);
else


do_globals(x,y,z);


C-Linda Alternate Operation Names
The alternate names __linda_in, __linda_rd, __linda_out, __linda_eval, __linda_inp, and 
__linda_rdp are provided for cases where the shorter names conflict with other program 
symbols. Each alternate operation name begins with two underscore characters.


Specifying Tuples and Basic Tuple Matching Rules


This section discusses tuples and tuple matching rules in more detail and includes 
examples that use a variety of data types.


Tuples can have a maximum of 16 fields. In C-Linda, tuple fields can be of any of the 
following types:


int, long, short, and char, optionally preceded by unsigned.
float and double
struct
union
Arrays of the above types of arbitrary dimension, including multidimensional 
arrays.
Pointers must always be dereferenced in tuples.


In Fortran-Linda, tuple fields can be of these types:


Integer (*1 through *8), Real, Double Precision, Logical (*1 through 
*8), Character, Complex, Complex*16
Synonyms for these standards types (for example, Real*8).
Arrays of these types of arbitrary dimension, including multidimensional arrays, 
and/or portions thereof.
Named common blocks
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Formal Tuple Matching Rules
A tuple and a template match when:


They contain the same number of fields.


All corresponding fields are of the same type.


• The type of a field containing an expression is whatever type the expression 
resolves to. The type of a field containing a formal is the type of the variable 
used in the formal.


• In C, for a structure or union field, the type is extended to include the 
structure or union tag name. The tag name and size of structures must match. 
Tagless unions and structures are not allowed.


• In Fortran, common blocks match based upon their name alone. Their 
internal structure is not considered. 


• Arrays match other arrays whose elements are of the same type. Thus, an 
array of integers will match only other arrays of integers and not arrays of 
characters. Similarly, real arrays will not match integer arrays, even when they 
contain the same length in bytes.


• Scalar types don’t match aggregate types. For example, if a is an array of 
integers, then a:1 won’t match an integer (but a[2] in C and a(2) in 
Fortran will). Similarly, in C, if p is a pointer to an integer, *p and p:1 do not 
match (the :n array notation is discussed later in this chapter).


The corresponding fields in the tuple contain the same values as the actuals in the 
template.


• Scalars must have exactly the same values. Care must be taken when using 
floating point values as actuals to avoid inequality due to round-off or 
truncation. 


• Aggregate actuals such as arrays (which otherwise match) must agree in both 
the number of elements and the values of all corresponding elements. 


The following sections contain many illustrations of these matching rules.
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Scalars
The following C operations all place a tuple with an integer second field into the tuple 
space:


int i, *p, a[20], f();
p = &i;


out("integer", 3);/* constant integer */
out("integer", i);/* integer variable */
out("integer", *p);/* dereferenced ptr to int */
out("integer", a[5]);/* element of an int array */
out("integer", f(i));/* function returns an int */
out("integer", *++a);/* dereferenced ptr to int */


Note that single elements from an array are scalars of the type of the array. 


The constructs &i and p are not included among these examples because each of them is 
a pointer to an integer; they are treated as arrays not as scalars (see the next section). 
Thus, the following tuple and template will not match even though p points to i (an 
integer):


("integer", p:1)
("integer", ?i)


Here are some example Fortran-Linda operations involving scalars:


Real a(20), x
Integer i
Character *10 name


out('integer', i)
out('real', x)
out('real', a(6))
out('character', name)


Note that Fortran Character variables are scalars.


Arrays
Array handling within tuples and templates is very easy. Here are some examples of 
tuples and templates involving arrays:


C: char a[20];
int len;


out("array1", a:);
in("array1", ?a:);


out("array2", a:10);
in("array2", ?a:len);







Specifying Tuples and Basic Tuple Matching Rules


Linda User Guide 29


Fortran: Dimension a(20)
Integer len


out('array1', a)
in('array1', ?a)


out('array2', a:10)
in('array2', ?a:len)


The general format for an array field in a tuple is name:length, where name is the array 
name, and length is the length of the array (number of elements). As the out operations 
in the examples indicate, the length is often optional. When it is omitted, the entire length 
of the array is assumed. In C, you must still include the colon when omitting the length, 
while in Fortran, the colon may also be omitted (although including it is correct too). For 
example, the first out operation in each language places the entire array a into the tuple 
space.


If you only want to place part of an array into the tuple space, then you can include an 
explicit length in the out operation. In this way, the second out operation in each 
language places only the first ten elements of array a into the “array2” tuple.


The array format is basically the same for arrays used as formals in templates. The one 
difference is that an integer variable is used for the length parameter, and its value is set 
to the length of the array in the matching tuple. Thus, the final pair of in operations in the 
preceding example will both result in the value of len being set to 10.


The semantics of Linda ensure that a user may alter the contents of an array immediately 
upon return from the out—the tuple generated by the out will still reflect the contents of 
the array just prior to the out. To enforce these semantics, Linda makes a copy of the 
array before returning from the out. Shared memory implementations of Linda allocate 
space for this copy in the shared memory region. Non-shared memory implementations 
of Linda allocate memory in the address space of the process executing the out.


Avoiding Array Copies


This copying can be problematic for very large arrays: It can nearly double memory 
requirements and add significantly to the time needed to process the tuple. Many 
non-shared memory Linda implementations provide a way for the user to request that the 
array not be copied. The user does this by negating the length. In this case, a supporting 
Linda implementation simply records the address of the data. This address is then used to 
locate the data that must be retrieved To satisfy a rd or an in. Any changes made to the 
data after the out but prior to retrieval will be reflected in the data sent. Since the user 
generally cannot know when the system internally retrieves the data, the tuple’s content in 
the presence of such modifications has to be viewed as nondeterministic. While it is 
possible to design a parallel algorithm that exploits this non determinism, using a negated 
length field is tantamount, in most cases, to a promise (to oneself!) that the array will not 
be modified until, by some means, it is known that all rds and ins against the tuple have 
completed. Refer to the release notes to see if a particular implementation supports this 
optimization. For more on arrays, Fixed Aggregates in C on page 36.
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Pointers and Assumed-Size Arrays


C pointers to arrays and Fortran assumed-size arrays must always specify an explicit length 
when they are used as an actual within a tuple, as in these out operations:


C: char b[20], *p, d[30];
int len;


p = b;
out("array2", p:20);
in("array2", ?d:len);


Fortran: Dimension b(*), d(30)
Integer len


out('array2', b:20)
in('array2', ?d:len)


In both cases, the first twenty elements of array d are set to the value of the 
corresponding element in array b, and the variable len is set to 20. This requirement 
makes sense since these constructs can be used with arrays of different sizes within the 
same program. 


The following out operations yield identical tuples:


C: int *p, a[20];
p = a;


out("array", a:);
out("array", a:20);
out("array", p:20);


Fortran: Integer a(20)


out('array', a)
out('array', a:)
out('array', a:20)


The length is required in the third C example; pointers must always specify an explicit 
length.


You could create a tuple containing the first ten elements of a with any of these 
operations:


C: int *p, a[20], b[20], c[10], len;
p = a;


out("ten elements", a:10);
out("ten elements", p:10);
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Fortran: Integer a(20), b(*), c(10), len


out('ten elements', a:10)


and retrieve it with any of these operations:


C: in("ten elements", ?a:len);
in("ten elements", ?p:len);
in("ten elements", ?b:);
in("ten elements", ?c:);


Fortran: in('ten elements', ?a:len)
in('ten elements', ?a:)


All of the operations will retrieve ten integers, and len will be assigned the value 10 for 
those operations including it. Note that omitting the length variable is allowed, and such 
statements still will retrieve whatever number of elements is present in the “ten elements” 
tuple.


Assuming that the first ten elements of array b have the same values as the corresponding 
elements of array a, the following in operations would consume one of the “ten element” 
tuples without assigning any values:


C: in("ten elements", b:10);


Fortran: in('ten elements', b:10)


Here array b is used as an actual, and a matching tuple is simply removed from the tuple 
space (assuming one exists). Note that there are better ways to remove tuples from the 
tuple space without copying the data in them, as we will discuss later.


Array references can begin with any desired element, as in these examples:


C: in("ten elements", ? &b[4]:len);


Fortran: in('ten elements', ?b(5):len)


These operations would retrieve a “ten elements” tuple, place the ten array elements it 
held into the fifth through fourteenth elements of array b, and set the value of len to 10. 
Although the examples in this section have used integer arrays, exactly the same 
principles and syntax apply when accessing arrays with elements of other types. 


Note that retrieving a tuple containing an array longer than the target array used in the 
template will result in writing past the end of the target array.
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Multidimensional Arrays


In Fortran, array shape is ignored, and so multidimensional arrays can be handled in a 
similar way to one-dimensional arrays. If you want to refer to a subsection of a 
multidimensional array, you can do so by specifying a starting element and/or length, but 
a more powerful mechanism for doing so is provided by the Fortran 90 array syntax, 
described in the next section. 


The remainder of this section will discuss multidimensional arrays in C.


In C, the basic principle to keep in mind is that multidimensional arrays match only when 
their types and shapes are the same; the same holds true for sections of multidimensional 
arrays. We will use these arrays in the examples:


int a[100][6][2], b[60][4][5], d[100][6][2];
 


The following operations create and retrieve a tuple containing a multidimensional array:


out("multi", a:);
in("multi", ?d:);


The following in operation will not succeed because the shapes of arrays 
a and b are different (even though they have the same number of elements):


out("multi section", a:);
in("multi section", ?b:);/* WILL NOT WORK */


Portions of multidimensional arrays may also be specified. Here are some examples:


int a[3][5][2], b[5][2], c[2], i;


out("section", a[0][0]:);
in("section", ?c:);


out("2d section", a[0]:);
in("2d section", ?b:);


out("not an array", a[0][0][0]);
in("not an array", ?i);    /* just a scalar ... */


In the first pair of operations, the construct a[0][0]: points to the start of an array of 
length 2 which is why the formal involving array c matches it. In the second pair of 
operations, two 5x2 array sections (with the second one consisting of the entire array b) 
will match.


The last example is a bit tricky; in this case, the out operation creates a tuple with the first 
element of a as its second field, and any integer can be used in a formal to retrieve it.
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Fortran 90 Array Sections


Fortran-Linda recognizes a subset of the array syntax used in the Fortran 90 standard 
within its operations. This syntax provides an alternate way of referring to arrays and 
their subsections and may not be combined with the name:length notation we’ve 
considered so far.


Array subscript references in Fortran-Linda may take the following form:


[ifirst]:[ilast][:istride]


where ifirst is the smallest index of a slice of the array, ilast is the largest index in the slice, 
and istride is the stride (if omitted, the stride defaults to 1). A full array section is specified 
with this type of expression for each dimension in the array. The shorthand form of a 
single colon alone refers to the entire range of values for that array dimension with stride 
1.


Here are some examples:


real a(100,100,100), b(100,100)


out('whole array', a(1:100,:,1:100))
out('second row', b(2:2,:))
out('divide in 2--part 1', a(:,:,:50)
out('divide in 2--part 2', a(:,:,51:)
out('every other', b(1:100:2,1:100)


The first out operation places the entire array a into the tuple space. The second places 
only the second row of array b. The third and fourth operations divide array a in half and 
place the two halves into the tuple space, defaulting the beginning and ending elements in 
the third dimension to the first and last array element, respectively. The final operation 
illustrates the use of the stride value.


Fortran Named Common Blocks
Entire named common blocks can be transferred to a tuple space as a single unit. Named 
common blocks are referenced by their common block name, enclosed in slashes. For 
example, the following operations place and retrieve the designated common block:


Common /example/a,b,c,d,n


out('common', /example/)
in('common', ?/example/)


The out operation places the entire common block into the tuple space, and the 
following in operation matches and retrieves this same tuple. For matching purposes, 
common blocks with identical names match, and the internal structure of the common 
block is ignored. Blank common may not be placed into tuples using this method. The 
best solution in such cases is usually to convert it to a named common block.
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C Structures
From the point of view of syntax, structures work very much like scalars. For example, 
these two out operations create identical tuples:


struct STYPE s, t, *p;


p = &s;
out("structure", s);
out("structure", *p);


Either of these in operations will retrieve one of the tuples created by the previous out 
operations:


in("structure", ?t);
in("structure", ?*p);


Structure fields are one way to create tuples containing one record of data. For example, 
the following loop retrieves NREC records from a database and places them into the 
tuple space. Each record is identified by the integer record number in the tuple’s second 
field:


int i;
struct REC s;


for (i=0; i < NREC; i++) {
get_next_rec(&s);
out("record", i, s);


 }


Structures may also be used as actuals in templates:


in("structure", t);


In this case, the structures in the tuple and template must have the same structure tag, the 
same size, and they must be identical on a byte-by-byte basis, including values in any 
padding bytes. When using such constructs, be careful to take structure padding into 
account.


An array of structures is treated just like any other array:


int len;
struct STYPE s[20], t[20];


out("struct array", s:10);
/* matches; sets len = 10 */
in("struct array", ?t:len);
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Varying-Length Structures


You can use the colon notation with structures to specify them as varying. In this case, 
the length is taken to be the size of the structure in bytes. This construct was designed for 
structures having varying arrays as their last elements.


Here are two examples:


struct STYPE {
double a,b,c;
int buf_len;
int buf[1]


};
int bytes;
STYPE *s;


/* declared struct length */
out("varying struct", *s:);


bytes = sizeof(STYPE) + (sizeof(int) * (buf_len-1));
/* current structure length */
out("varying struct", *s:bytes);


The first out operation creates a tuple with a varying structure as its second field. The 
second out operation creates a tuple whose second field is also a varying structure; for 
this instance, the current length is set to the size in bytes of STYPE (including the first 
element of array buf) plus the size in bytes of the remainder of array buf (the product of 
the size of one element and its number of elements minus 1). 


C Character Strings
In keeping with C usage, character strings are simply arrays of characters, and the normal 
array considerations and matching rules apply. The only exception occurs when 
comparing string constants with character arrays.


The length of a string constant is the number of characters in it plus one, for the null 
terminator. Thus, the string “hello” has a length of 6, and a five-element character array 
will not match it; it requires a six element array:


char s[6];
int len;


out("string", "hello");/* length = 6 */
in("string", ?s);
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The array colon notation may also be used with strings for fields where the length of the 
string is variable:


out("string", "hi":);
in("string", ?s:len);


Note that the literal string in the out operation needed to include the colon in order for 
the template in the in operation to match since the template does not require a string of a 
specific length. This requirement holds for such templates even when the length of the 
literal string in the tuple and the declared length of the array used in the template are the 
same—even if hi had been hello, the colon would still be needed in the out operation.


Anonymous Formals
A formal need not include a variable name, but instead can use a data type name in C, and 
in Fortran can use a typeof construct with a data type name as its argument. Here are 
some examples:


C: struct STYPE s;


in("data", ?int);
in("struct", ?struct STYPE);
in("int array", ?int *:);


Fortran: Common /sample/array,num,junk


in('data', ?typeof(integer))
in('array', ?typeof(real*8):)
in('common', ?typeof(/sample/))


Such formals are called anonymous formals. Anonymous formals within in operations 
still remove a tuple from the tuple space, but the data in that field is not copied to any 
local variable. It is effectively thrown away. This construct can be useful when you want 
to remove a tuple containing, for example, a large array from a tuple space. Anonymous 
formals allow it to be removed without the time-consuming copying that would result 
from an in operation.


A rd operation with a template containing only actuals and anonymous formals has no 
effect if there is a matching tuple, but still blocks when none is available.


Fixed Aggregates in C
In C, you can reference fixed length aggregates such as arrays in tuples simply by name 
(i.e., without the colon notation). For example, if a is an array of declared length 20, then 
it can be referred to in a tuple by its name alone, as in this example:


int a[20], b[20];


out('array', a)


Similarly, you can retrieve such an array by name:
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rd('array', ?b)
in('array', ?a)


You can also treat multidimensional arrays (and sections thereof) this way:


int a[100][6][2], b[25][24][2];


out("multi section", a[0][0]);
in("multi section", ?b[0][0]);


In these statements, both arrays are essentially being used as pointers to the start of a 
fixed aggregate of length 2. Two array sections treated as fixed aggregates in this way 
must have the same length and shape to match.


Fixed aggregates never match arrays specified in the usual way. Fixed aggregates match 
only other fixed aggregates. Literal character strings specified without a terminal colon 
are treated as fixed aggregates. Thus, neither of the following in operations will find a 
match:


char a[20], s[6];
int len;


out("wrong", a:);
out("also wrong", "hello");


in("wrong", ?a);/* no match */
in("also wrong", ?s:len);/* no match */


Termination of Linda Programs


Since a Linda program can consists of many concurrent processes, program termination 
requires a bit more care than for sequential programs. Linda programs can terminate in 
one of three ways:


The program can terminate normally when the last process (usually real_main) 
finishes (returns from its outermost call). A program may terminate by having the 
final process call the C-Linda support function lexit (flexit is the 
Fortran-Linda form), but this is not required. Note that if you want to call an exit 
function, use lexit; never use the standard system call exit.


The program can force termination by calling lhalt (C) or flhalt (Fortran). 
When such a call occurs in any process of the Linda program, the entire 
computation will be terminated immediately and automatically.


If any process terminates abnormally, then the entire program will again be 
terminated automatically at once.
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An individual process within the parallel program may terminate execution of user code 
by calling lexit or flexit. This function terminates local user processing without 
affecting the other running processes (if any).


See the Linda Usage and Syntax Summary for full details on available termination 
routines and their use.


Example: Freewake


We’re now ready to look at another Linda program which illustrates all four operations 
and several tuple matching principles in action. This program also illustrates the following 
techniques:


The master process becoming a worker after initialization is complete.
The use of a composite index to combine two existing indices.


The program we’ll examine is named Freewake, a computational fluid dynamics 
application. It was developed to model the wake structure created by helicopter rotor 
blades and its influence on the blades themselves to aid in the design of new helicopters. 
It was originally parallelized with C-Linda, but we will provide both C-Linda and 
Fortran-Linda versions here.


At its core, the calculation is essentially a very complex N-body problem: the wake 
surface is divided into a large number of discrete elements. The structure of this surface 
depends on the properties of the individual elements, including their velocities. For each 
time step, the change in velocity of each element is a function of its interactions with all 
of the other elements, and all of these changes in velocity determine the new structure of 
the wake surface. Once it is obtained, the program calculates the interaction of the wake 
and the blades themselves. 


The vast majority of the computation is spent calculating the displacement of each point 
of the wake for each time step. This is computed by these three nested loops. (See How 
and Where to Parallelize on page 14 for information about determining the most 
computationally intensive portions of a program.) Here is the original Fortran code:


DO I = 1, NBLADES! Typically = 2
DO J = 1, NFILMNT! Typically = 16
DO K = 1, NSEGMNT! Typically = 512


CALL CALCDISP( X(I,J,K), Y(I,J,K), Z(I,J,K),
DX(I,J,K),DY(I,J,K),DZ(I,J,K))


END DO; END DO; END DO


The subroutine CALCDISP calculates the displacement of a single point in three 
dimensional space. Each call to CALCDISP is independent. It takes the x, y, and 
z-coordinates of a point in space (elements of the arrays X, Y, and Z, respectively), and 
produces the displacement in each direction of the specified point in space as its only 
output (elements of the arrays DX, DY, and DZ). Thus, performing some of those calls at 
the same time would have a large effect on overall program performance. 
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Here is the key part of the code which serves as the master process and coordinates the 
calls to CALCDISP:


C Version /* put data into tuple space */
out ("wake", x, y, z, nblades, nfilmnt, nsegmnt);


out ("index", 0) /* create task counter */
for (i = 0; i < NWORKERS; i++) /* start workers */


eval("worker",worker());
worker(); /* then become a worker */


for (index = 0; index <= nblades * nfilmnt; index++) {
/* gather data from tuple space */
in("delta", index, ?tmp_x, ?tmp_y, ?tmp_z);
Put data into the displacement arrays DX, DY, and DZ.
}


Fortran
Version


C Put data into tuple space
out('wake', x, y, z, nblades, nfilmnt, nsegmnt)


C Create task counter, start workers, then become
C a worker yourself.


out('index', 0)
Do 10 I=1,NWORKERS


eval('worker', worker())
10 Continue


Call worker


Do 20 index=0,nblades*nfilmnt-1
in('delta', index, ?tmp_x, ?tmp_y, ?tmp_z)
Put data into the displacement arrays DX, DY, and DZ.


20 Continue


The first out operation places the position arrays x, y, and z into tuple space in the 
“wake” tuple; later, the workers will each rd it. Then, the master process creates the 
“index” tuple, from which the workers will generate tasks. In the first for loop, the master 
process next starts NWORKERS worker processes.


At this point, the master process has completed all necessary setup work, so it becomes a 
worker itself by calling the same worker function used in the eval operations. This is a 
common technique when few startup activities are required, and worker processes run 
for a long time. If the master did not become a worker, then its process would remain 
idle until the workers finished.


After the workers finish, the master process executes the final for loop, which gathers the 
results produced by all the workers, removing them from tuple space and placing them in 
the locations expected by the original Fortran program. 


Here is a simplified version of the worker routine:
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C Version worker()
{


rd("wake", ?x, ?y, ?z, ?nblades, ?nfilmnt, ?nsegmnt);


while (1) { /* loop until work is done */
in ("index", ?index); /* get current task index */
out("index", index+1); /* increment and put back */
if (index >= nblades * nfilmnt) /* test if done */


break;


iblade = index / nfilmnt; /* blade */
ifil = index % nfilmnt; /* filament */
for (iseg=0; iseg<nsegmnt; iseg++) /* segment */


calcdisp_(&x[iseg][ifil][iblade], 
&y[iseg][ifil][iblade], &z[iseg][ifil][iblade],
&dx[iseg], &dy[iseg], &dz[iseg], &x, &y, &z);


/* place results in tuple space */
out("delta", index, dx, dy, dz);


}
}


Fortran
Version


Subroutine worker
Double Precision x(*), y(*), z(*)


rd('wake', ?x, ?y, ?z, ?nblades, ?nfilmnt, ?nsegmnt)


Do 10 I=1,VERY_BIG_NUM
in('index', ?index)
out('index', index+1)
if (index .GE. nblades*nfilmnt) Return


iblade=(index / nfilmnt) + 1
ifil=modulo(index,nfilmnt)+1
Do 20 iseg=1,nsegmnt


call calcdisp(x(iblade,ifil,iseg),
* y(iblade,ifil,iseg), z(iblade,ifil,iseg),
* dx(iblade,ifil,iseg), dy(iblade,ifil,iseg),
* dz(iblade,ifil,iseg))


20 Continue


out('delta', index, dx, dy, dz)
10 Continue


Return
End


Each worker process first reads the position arrays and their index limits from tuple 
space. The worker then loops continuously until all points are done. At the beginning of 
each loop, it removes the “index” tuple from tuple space, increments the counter in its 
second field, and then returns it to tuple space for possible use by other processes.
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This counter, stored in the variable index, serves as a composite index, combining the 
outer two loops of the original Fortran code. Each task consists of executing the inner 
Fortran loop for a fixed pair of I and J values (i.e., specific blade and filament indices). A 
single counter tuple is easily retrieved, incremented, and returned to tuple space.


There are NFILMNT times NBLADES distinct pairs of I and J values, so the worker first 
tests whether the counter’s value is greater than or equal to this product; equality is 
included in the test since index begins at 0 and runs to (nfilmnt*nblades)-1 
(we’ve given the equivalent variables in the Linda programs lowercase names). The 
variable iblade is defined as index divided by nfilmnt, and ifil is defined as 
index modulo nfilmnt. Because these are integer operations and all fractions are 
truncated, iblade will remain 0 until index reaches nfilmnt, then become and 
remain 1 until index reaches nfilmnt*2, and so on. At the same time, ifil counts 
from 0 to nfilmnt-1 for each value of iblade over the same period. The following 
table indicates the encoding of iblade and ifil within index for nfilmnt=3 and 
nblades=2.


blade filament
index iblade iseg


0 0 0
1 0 1
2 0 2
3 1 0
4 1 1
5 1 2
6 terminate


Once iblade and ifil are computed, a for loop calls a slightly modified version of the 
original calcdisp routine once for each segment value, using the computed iblade 
and ifil values each time. In the C-Linda version, this loop differs from the Fortran 
inner loop it replaces in several ways. First, the arguments to calcdisp are explicitly the 
addresses of the relevant array elements, since Fortran subroutine arguments are always 
passed by reference. Second, the first and third array indices are reversed, due to the 
differing Fortran and C multidimensional array ordering conventions. The Fortran arrays 
have not changed in any way, so the location denoted by the Fortran X(i1,i2,i3), for 
example, must be accessed as x[i3][i2][i1] from C. Third, C arrays begin at 0 while 
the Fortran arrays begin at 1. However, this is easily accounted for by making iseg run 
from 0 to nsegmnt-1 rather than from 1 to nsegmnt (as it did in the Fortran loop). 
Fourth, we’ve also added the addresses of the arrays x, y, and z to the subroutine’s 
arguments (in Fortran, CALCDISP accesses them via a COMMON block not shown 
here). Finally, we’ve translated the subroutine name to lowercase and appended an 
underscore, a common requirement when calling a Fortran subroutine from C.


After the inner loop completes, the worker sends the displacement values it has created 
to tuple space, and the outer loop begins again. When the counter in the “index” tuple 
exceeds its maximum value, each worker process will terminate the next time it examines 
it.
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As we’ve seen, it was very easy to transform Freewake into a parallel program with Linda 
because all of its work is isolated so well within a single routine. In the next chapter we’ll 
look at several more complicated case histories.
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3
Using TCP Linda


This chapter describes the special considerations involved when executing Linda 
programs on a network of computers.† The network version of Linda is called TCP 
Linda, and that terminology is used here as well. Release notes for particular platforms 
often contain additional information relevant to the use of TCP Linda.


Quick Start


Running parallel programs on networks is complicated by issues such as process 
scheduling, executable location, remote execution facilities, and the like. ntsnet is a 
powerful, flexible utility for executing Linda programs on a network, designed to help 
you manage this complexity. This section discusses the simplest possible case, and is 
designed to enable you to get started running programs right away. The remainder of the 
chapter covers more complex scenarios and the ntsnet features provided to handle them.


Normally, TCP Linda runs the real_main process on the local system, and evaled 
worker processes run on remote hosts. This requires that it is possible to successfully 
execute an rsh command from the local host to each remote host without being required 
to enter a password. Consult the man page for rsh or your system administrator if this 
condition does not hold true for your site.


In the simplest case, the current working directory is a commonly-mounted directory, 
accessible by the same pathname from every host that you want to use (it can be a 
permanent mount point or be auto-mounted). 


Given these assumptions, the following steps are necessary to create and  run a TCP 
Linda program:


Make sure that the bin subdirectory of the Linda distribution tree is in the search 
path.


Define the set of hosts to be used for program execution by creating the file 
.tsnet.config in your home directory, containing a single line like this one:


Tsnet.Appl.nodelist: moliere sappho blake shelley


Replace the sample node names with the appropriate ones for your network.


† TCP Linda is also available for certain distributed memory parallel computers. However, the 
discussion here centers on networks, although identical considerations apply in both cases. This 
discussion applies only to TCP Linda version 2.4.7 or higher.
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Compile the program, using a command like the following:


$ clc -o hello_world hello_world.cl


See the “Quick Start” section of Chapter 2 for a more detailed discussion of this 
and the following step.


Finally, run the program, preceding the normal invocation command and 
arguments with ntsnet:


$ ntsnet hello_world 4


ntsnet will automatically run the program on the defined set of nodes.


What ntsnet Does


ntsnet is responsible for the following tasks:


Parsing the command line options and configuration file entries.
Querying remote systems for load averages.
Locating local executable files.
Determining what set of nodes to run on, based on its scheduling algorithm.
Determining working directories and executable file locations on remote nodes, 
using map translation and the associated configuration files (if necessary).
Copying executable files to remote nodes (if necessary).
Initiating remote processes.
Waiting for normal or abnormal termination conditions during program 
execution.
Shutting down all remote processes at program termination.
Removing executables from remote systems (if appropriate).


The remainder of this chapter will look at these activities—and the ways that the user can 
affect how ntsnet performs them—in considerable detail.
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Using the ntsnet Command


The general syntax for the ntsnet command is:


ntsnet [options] executable [arguments]


where options are ntsnet’s options, executable is the executable file to run on the local 
system, and arguments are command line arguments for the specified network program. 
ntsnet uses the command line options, the location of the local executable, and the 
settings in its configuration files to determine all of the remaining information it needs to 
execute the network parallel program. 


Customizing Network Execution


TCP Linda provides the ntsnet command to execute parallel programs across networks 
of machines. ntsnet is designed for maximum flexibility. Proper configuration makes 
running a TCP Linda program as simple as prepending its executable’s pathname—and 
any arguments—with the ntsnet command, as in the previous example.


ntsnet can draw its configuration information from a variety of sources. These sources 
are, in order of precedence:


command line options
ntsnet’s application-specific configuration file (if any)
ntsnet’s local configuration file
ntsnet’s global (system-wide) configuration file
ntsnet’s built-in default values


When they do not conflict, the settings from all of these sources are merged together to 
create the ntsnet execution environment.


We’ll cover each of these items separately, in the context of actual execution tasks. See 
the Linda Usage and Syntax Summary for a complete reference to all command line 
options and configuration file resources and formats. 


ntsnet Configuration Files
ntsnet uses several configuration files: the global, local, and application-specific 
configuration files—we’ll use this term to refer to the specific files rather than in a generic 
sense from this point on—which define program execution characteristics, and the local 
and global map translation files, which define directory equivalences on the various potential 
execution nodes in the network.


ntsnet first looks for an application-specific configuration file, named 
tsnet.config-application_name, where application_name is the name of the application 
being executed with ntsnet (application names will be discussed shortly).  ntsnet looks for 
an application-specific configuration file in the following way: first, if the executable on 
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the command line contained a full or partial directory specification, that location is 
searched for this configuration file. If only an executable filename was given, then the 
directories in the TSNET_PATH environment variable are searched in turn.


The optional local configuration file and map translation file are named 
.tsnet.config and .tsnet.map respectively. If used, these must be located in the 
user’s home directory. The global files—tsnet.config and tsnet.map—are located 
in the common/lib subdirectory of the Linda tree: for example, in /usr/sca/
linda7.1/common/lib if the Linda tree begins at /usr/sca/linda7.1. Settings in 
the local files always take precedence over those in the global files, and settings in the 
application-specific file take precedence over the local file. The global files may also be 
ignored entirely if desired. Note that precedence operates on a setting-by-setting basis, 
and not by an entire file. 


The ntsnet configuration files contain entries which specify various execution parameters 
and desired characteristics. Depending on the parameter to which they apply, entries can 
vary significantly in their ultimate scope; they can affect:


The execution of any TCP Linda program
The execution of a specific program on every node it uses
The execution of any program on a specific node
The execution of a specific program only on a specific node 


The configuration file syntax is modeled after the Xlib resources of the X Window 
System. However,  ntsnet and TCP Linda are neither part of X nor do they require it. 
Some users may find a general introduction to X resources helpful; see the Bibliography 
for the appropriate references.


A resource is basically just an execution parameter (characteristic). The configuration file 
defines values for the various available resources and specifies the contexts—application 
programs and/or execution nodes—for which the value applies. 


The ntsnet configuration files consist of lines of the following form:


program[.application][.node].resource: value


where program is the system program name to which the resource being defined is applied, 
application is the relevant user application program, node is the relevant node name, resource 
is the resource/characteristic name, and value is the value to be set for this resource in this 
context. We’ll look at each of these parts in turn.


To begin with, the system program for the ntsnet configuration file entries will always 
refer to TCP Linda. We’ll look at the exact syntax of this component in a moment. At 
this point in time, this component is simply a carryover from the X syntax.


A resource can be either application-specific, node-specific, or apply to both applications and 
nodes. For example, the resource rworkdir, which specifies the working directory on a 
remote node, is application and node specific, meaning that a different value can be set 
for it for every application program and node combination. For example, you can specify 







Customizing Network Execution


Linda User Guide 47


a different working directory when running program bigjob on node moliere and on 
node chaucer, and you can specify different working directories for programs bigjob and 
medjob on node moliere. 


In contrast, the resource speedfactor is node-specific, meaning that you can specify a 
different value for each potential execution node, but not for node-application program 
combinations; the value for a node applies to all TCP Linda applications that run on it. 
Such resources usually specify intrinsic characteristics of a node which don’t depend on 
the application program being run. For example, speedfactor specifies how fast a node is 
relative to other nodes in the network, something which is relatively constant across 
different applications (at least in theory). 


Finally, the resource maxprocspernode is an application-specific resource, meaning that 
its value can be specified separately for different application programs. The value set for 
an individual application is used for whatever nodes it may execute on. This resource 
specifies the maximum number of processes per node that can be run for a given 
application program (the default is 1). 


Here are some example entries:


! some sample .tsnet.config file entries


ntsnet.hello_world.moliere.rworkdir: /tmp


ntsnet.hello_world.maxprocspernode: 1


ntsnet.moliere.speedfactor: 2


Lines beginning with an exclamation point (!) are comments. The second line sets the 
working directory to /tmp on the node moliere when the application hello_world is 
run there. The third line sets the maximum number of processes that can run on any one 
node when the application hello_world is executing to 1, and the final line sets the 
speed factor for the node moliere to 2—where the default value is 1—indicating that it’s 
about twice as fast as the norm.


In configuration file entries, the program, application and node components (if used) can 
be either the class name or a specific instance of a class. Class names—recognizable by 
their initial capital letter—act as wildcards, stating that the entry applies to all instances of 
the specified class. In this way, they can serve as default values for specific instances—
specific applications and/or nodes—for which no explicit entries have been created. The 
following table lists the possible values for each of these three components of a 
configuration file entry:
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Item Associated Class Name Example Instance
program Tsnet ntsnet
application Appl user application program name
node Node node name, user-defined node resource 


Currently, ntsnet is the only valid specific instance of the class Tsnet, so the two are 
effectively equivalent. Thus, for every entry, the program component will be either the 
class Tsnet or its only specific instance, ntsnet. 


Application names are usually the name of the corresponding executable program. In 
order to make the separations between components possible, however, periods in 
application names must be translated to underscores. Thus, the application big.job 
would appear in configuration file entries as big_job. Application names can also be 
user defined if desired, and the application name to use for a given run can be specified 
on the command line with ntsnet’s -appl option. For example:


$ ntsnet -appl big_job medium.job


This option can be used either to apply one application’s settings to a different 
application program or to specify the use of a user-defined application name (which need 
not correspond to the name of any executable program). Note that periods in executable 
names are translated to underscores only when used as application names in the 
configuration files; such translation should not take place at any other time, such as when 
they are invoked in the ntsnet command line. 


Node names can be full node names, such as moliere.frachem.com, or node nicknames: 
moliere. In the node component of configuration file entries only, periods again have to be 
translated to underscores (so that ntsnet can figure out where the component boundaries 
are). Anywhere else in the configuration file—as part of resource values, for example—
and on the command line, no such translation is used.


Configuration file resources are keywords whose values specify some kind of execution 
behavior option or application or node characteristic. Consider these examples:


Tsnet.Appl.Node.rworkdir: /tmp


Tsnet.Appl.maxprocspernode: 4


Tsnet.Node.speedfactor: 1


These three entries all refer to application and node classes only, thereby serving as 
default values for instances not specifically defined in other entries. The first line sets the 
default working directory for remote nodes to /tmp on each node. The second line sets 
the maximum number of processes per node to 4, and the final line sets the default node 
speed factor to 1. These entries are completely general, applying to every application 
program and/or node. Contrast them to the earlier example, which applied only to the 
explicitly named applications and nodes.
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One can also freely intermix classes and specific instances, as in these examples:


Tsnet.hello_world.Node.rworkdir: /tmp/hello
Tsnet.Appl.moliere.rworkdir: /xtmp


The first example sets the default working directory to /tmp/hello for any remote 
node when the program hello_world is run. The second example sets the default 
working directory on node moliere to /xtmp whenever a network application without its 
own entry for this resource runs remotely on it. 


Many resources have corresponding ntsnet command line options. These options are 
designed to be used to override configuration file settings for a specific program run 
(although they can be used instead of the configuration files if desired). Here is an 
example command which runs hello_world, overriding its usual maxprocspernode 
resource setting:


$ ntsnet -maxprocspernode 3 hello_world ...


Command line options override any configuration file settings. Remember also that local 
configuration file settings take precedence over those in the global (system-wide) 
configuration file. 


Resource Types


In addition to their scope—node-specific, application-specific, or node and application 
specific—resources can also be classified by the kind of value they expect.


Some resources, like those we’ve looked at so far, require a value: an integer or a 
directory, for example. Many others are Booleans, and expect a true or false setting for 
their value. For such resources, the following values are all interpreted as true: true, yes, 
on, 1. These values are all interpreted as false: false, no, off, 0. For example, the following 
entry indicates that the node marlowe is not currently available:


Tsnet.marlowe.available: no


ntsnet command line options corresponding to resources taking Boolean values use the 
following syntax convention. If the option name is preceded by a minus sign, then the 
resource is set to true, and if it is preceded by a plus sign, the resource is set to false. For 
example, the command line option -useglobalconfig sets the resource useglobalconfig to 
true, stating that the global ntsnet configuration file should be consulted. The option 
+useglobalconfig sets the resource to false, and the global configuration file will be 
ignored. The polarities of the plus and minus signs may seem counterintuitive at times; 
just remember that minus means on, which is the usual  convention used by most X 
applications. 


Note that all options which require parameters—for example, the command line option 
-maxprocspernode option we looked at earlier—are preceded by a hyphen (a prepended 
plus sign has no meaning for them and will generate an error). Their values follow them, 
separated by a space. 
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Not all resources have named command line options. The -opt option is provided so that 
any resource’s value can be specified from the command line. It takes a valid 
configuration file entry as its parameter, enclosed in double quotation marks:


$ ntsnet -opt "Tsnet.moliere.available: no" hello_world …


A third type of resource enables users to create named node lists. Here are some 
examples:


Tsnet.Appl.fran: moliere gaughin voltaire pascal


Tsnet.Appl.eng: chaucer marlowe blake joyce


Tsnet.Appl.chem: @sparcs @rs6k priestley dalton


Each of these lines defines a name for a list of nodes. The first line defines a list of nodes 
to be associated with the name sparcs, for example. When a list name is used as a 
component in another list, its name is preceded by an at sign (to indicate resource 
indirection), as in the third line above. Up to 16 levels of indirection are allowed. 


We’ve now introduced all the pieces of the ntsnet configuration file. The following 
sections will introduce many of the specific resources in the context of TCP Linda 
execution scenarios. 


Determining Which Nodes a Program Will Run On


Two resources control what nodes a given application will run on. First, the nodelist 
resource, which takes a list of nodes as its value, specifies a node list for a given 
application. Here are some examples:


Tsnet.Appl.nodelist: @chem gauss newton descartes


Tsnet.hello_world.nodelist: gauss moliere dalton avogadro


The first line specifies the default set of execution nodes for TCP Linda programs (in 
addition to the local node). The second line specifies a different set for the application 
hello_world (which overrides the default value set in the first line).


Duplicates are automatically removed from node lists. Variant name forms for the same 
node—the full name and the nickname, for example—are also discarded (the first one is 
kept). In such cases, a warning message is printed. 


The nodelist resource can also take the special value @nodefile. This indicates that the 
contents of the file specified in the nodefile resource contains the list of nodes to be used 
(one name per line). If nodefile has not been given a value, then the file tsnet.nodes 
in the current directory is used. The value for nodelist defaults to @nodefile, so 
ignoring both of these resources will result in the same behavior as under previous 
releases of Network Linda (which used the tsnet command), providing  backward 
compatibility if you do nothing. 
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The -nodelist and -nodefile command line options correspond to the nodelist and 
nodefile resources respectively. The value for -nodelist must be enclosed in double 
quotation marks if multiple nodes are listed:


$ ntsnet -nodelist "moliere leopardi sappho" hello_world 4


Specifying Execution Priority
Two resources control the execution priority of processes started by ntsnet. The high 
resource (application-specific) indicates whether processes are nice’d or not (it defaults to 
true). If high is set to false, then processes are run at lowered priority. The command line 
options -high/+high (abbreviable to -h and +h) correspond to this resource. 


The nice resource (node and application specific) allows you to specify whether processes 
should be nice’d or not on a node-by-node basis for each application. For example, the 
following lines state that processes running hello_world on moliere should be nice’d 
but those on chaucer shouldn’t be (although generally processes that run on chaucer are 
nice’d):


Tsnet.hello_world.moliere.nice: true


Tsnet.hello_world.chaucer.nice: false


Tsnet.Appl.chaucer.nice: true


The default value for the nice resource is true. If the value of the high resource is set to 
true, then it overrides the setting of the nice resource.


How ntsnet Finds Executables


ntsnet locates the local executable—the executable file that will run on the local node 
(which is the node where the ntsnet command is executed)—in the following manner. If 
a full pathname is specified on the command line, that path specifies the exact location of 
the local executable. For example, the following command executes the network program 
hello_world in /tmp:


$ ntsnet /tmp/hello_world …


If only an executable name is specified, then ntsnet uses the TSNET_PATH environment 
variable to locate the executable file. The environment variable’s value should be a colon 
separated list of directories, which are searched in order for required executables 
(working just like the UNIX PATH variable). If TSNET_PATH is unset, it defaults to:


/usr/bin/linda:.


This means that first the directory /usr/bin/linda is searched, followed by the 
current directory.
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The location of the local executable can play a large part in determining the locations of 
the executable files to be run on remote nodes using ntsnet’s map translation feature 
(described below). These remote directory locations are also explicitly specifiable using 
the rexecdir resource (application and node specific). Here is an example:


Tsnet.Appl.Node.rexecdir: /usr/local/bin


Tsnet.Appl.moliere.rexecdir: /usr/linda/bin


Tsnet.hello_world.Node.rexecdir: /usr/bin


Tsnet.hello_world.moliere.rexecdir: /usr/linda/bin/test


The first line sets the default location for remote executables to /usr/local/bin on 
the remote system, meaning that ntsnet should use this directory on each node as the 
default location for the executable file to startup. Subsequent lines set different default 
values for the application hello_world and for the node moliere. The final line sets a 
specific value for the application hello_world when running remotely on moliere: the 
executable for hello_world on moliere resides in the directory /usr/linda/bin/
test. 


The rexecdir resource can also be given the special value parallel (which is its default 
value). This indicates that map translation is to be performed on the directory where the 
local executable resides, for every node which has no specific remote execution directory 
set. Map translation involves taking the name of the local directory containing the 
executable to be run and determining what the equivalent directory is for each remote 
node participating in the job. These equivalent directories are determined according to 
the rules set up by the user in the local and/or global map translation files. The format of 
these files is discussed in the next section. 


The -p command line option specifies the values for both rexecdir and rworkdir, 
overriding all other methods of specifying them (-p is discussed later in this chapter).


About Map Translation
As we’ve stated, map translation is a way of defining equivalences between local directory 
trees and directory trees on remote nodes. If your network presents a consistent view of a 
common file system (via NFS or AFS, for example), then you will not need to worry 
about map translation. On the other hand, if your networked file systems are not 
completely consistent—if a file system is mounted as /home on one system and as 
/net/home on another system, for example—then map files can be a great help in 
automating TCP Linda execution.


Basically, map files provide a  way of saying, “When I run a program from directory X on 
the local node, always use directory Y on remote node R.” Map translation occurs  for 
both the execution directories (locations of executable files) and working directories on 
each node.
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Map translation means that ntsnet translates local directories to their properly defined 
equivalents on a remote node before specifying an executable on (or copy an executable 
to) that remote node (executable file distribution is discussed later in this chapter). If map 
translation is enabled—as it is by default—but no translation is explicitly specified for a 
given directory and/or node (whether because its rules haven’t been specified or no map 
translation file exists), the rule is simple: look for the same directory on the remote node. 


If enabled, map translation occurs whether the local directories are specified explicitly (as 
when the full executable file pathname is given on the command line) or determined 
implicitly (using the TSNET_PATH for example). Thus, map translation will occur for 
both of the following commands:


$ ntsnet /tmp/test24


$ ntsnet test24


In the first case, ntsnet will translate the directory  you’ve specified, /tmp,  for each 
node where the application test24 will run; if no explicit translation has been defined, 
then ntsnet will perform a null translation and look for the program test24 in /tmp on 
each remote node as well.


For the second command, ntsnet will first determine the location of the test24 
executable on the local node, using TSNET_PATH (or its default value), and then  
translate that location for each remote node involved in the job. 


If the rworkdir resource is set to parallel (the default value), then the current working 
directory is also subject to map translation.


The Map Translation File
ntsnet uses the local and global map translation files, ~/.tsnet.map and common/
lib/tsnet.map (relative to the Linda tree), respectively, to determine the 
correspondences between directories on different nodes. The first matching entry is used 
to perform each translation. The map translation mechanism is extremely powerful and 
can be used to define equivalences among systems, whether or not their file systems are 
linked with NFS. 


Map translation is a two-step process. Rather than having to specify the exact translation 
for every pair of hosts within a network, map translation allows you to specify two rules 
for each host, to and from a generic value, known as a generic directory. A generic directory 
is a string—often a directory pathname—used essentially as a key into the various entries 
in the map translation file. The generic directory serves as the target for specific local and 
remote directories as ntsnet attempts to translate them for use on various nodes.


Map translation file entries use the following commands:


mapto Map a specific local directory to a generic  directory.


mapfrom Map a generic directory to a specific directory (usually on a 
remote node).
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map Equivalent to a mapto and a mapfrom, mapping specific 
directories to and from a generic directory.


Here is the general syntax for a map translation file entry:


mapverb generic-dir {
node-name : specific-dir;
node-name : specific-dir;
...
}


The generic directory is always translated to a specific directory before being used as a 
location for executables or as the working directory on any node. Thus, there is no 
requirement that it even exist as a real directory path. In fact, it is possible to use any 
arbitrary symbolic name as a generic directory.


These concepts will become clear once we look at several examples of map translation. 
We’ll use the sample network shown in the preceding illustration, which shows the 
location of users’ home directories for each node in the network, for our initial examples. 
On aurora, users’ home directories are located in /home, the mount point for one of its 
local disks. This same disk is normally statically mounted via NFS to three other systems: 
blake, chaucer, and flaubert. On blake, it is also mounted at /home; on the other two 
systems, it is mounted at a different directory location (at /u on chaucer, and at /u/home 
on flaubert). Home directories on erasmus are found in the local directory /mf. On the 
node gogol, the home directories from aurora are automounted as necessary at /net/
aurora/home. Finally, users don’t generally have their own home directories on node 
degas; when they run remote worker processes on this node, they use /tmp as their 
working directory (which is what is listed in the diagram).


aurora


chaucer blake


degas erasmus


flaubert gogol


/home


/u


/tmp /mf


/u/home /net/aurora/home


/home


NFS-mounted directory


Autom
ounted


A Sample Network
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Consider the following command, run by user chavez from the work subdirectory of her 
home directory on flaubert (i.e., /u/home/chavez/work):


$ ntsnet test24g


For this command to work properly and successfully execute on all of the nodes in the 
sample network, we need to construct rules that tell ntsnet how to translate this working 
directory for each of the nodes. Most of the work can be done by this map entry, which 
uses /home as its generic directory:


map /home {


chaucer : /u;


erasmus : /mf;


flaubert : /u/home;


gogol : /net/aurora/home;


}


This entry translates the listed local directories to the generic directory /home. The 
translation applies to the entire tree starting at the specified locations. Thus, in our 
example, ntsnet will translate the (local) current working directory on flaubert, /u/home/
chavez/work, to the generic directory /home/chavez/work (we don’t have to 
explicitly construct a rule for the current directory). When it needs to determine the 
working directory for a remote process participating in the execution of the application 
test24g, it will use this generic directory. So, when it starts a remote worker process on 
chaucer, it will use the directory /u/chavez/work as the current directory, translating /
home to /u, as specified in the rule for node chaucer. When ntsnet starts a remote worker 
process on blake, it still attempts to translate the generic directory, but no rule exists for 
blake. In this case, a null translation occurs, and the directory remains /home/chavez/
work, which is what is appropriate for this system.


The rule we’ve written will allow us to run our ntsnet from the work subdirectory of 
chavez’s home directory on nodes aurora and blake, and on any of the listed nodes except 
gogol; in each case, the current working directory will translate to /home/chavez/work, 
which will in turn be translated to the appropriate directory when ntsnet starts remote 
worker processes.


If we want to run the ntsnet command on node gogol, however, we must create an 
additional rule. Home directories on gogol are automounted from aurora on demand. 
When referred to in the context of a process starting from a remote system, their location 
can be written as in the first rule; thus, when a remote process is initiated on gogol from 
flaubert, the current working directory for the remote node is correctly translated to 
/net/aurora/home/chavez/work.
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However, if the ntsnet command is run instead on gogol from this same directory, the 
literal directory location—what is returned by pwd or the getcwd system call—is what is 
used for map translation, in this case, using the actual automounter mount point: /
tmp_mnt/net/aurora/home/chavez/work. Thus, the translation from generic to 
remote directories is handled correctly by the first rule, and what is needed is a rule for 
translating this local directory to a generic directory. This is the function of mapto entries. 
The following entry maps the local directory on gogol to the same generic directory we’ve 
been using:


mapto /home {


gogol : /tmp_mnt/net/aurora/home;


}


With this rule in place, running ntsnet from gogol will be successful, and the remote 
working directories we’ve considered so far will be set appropriately. Since this is a mapto 
entry, it will never be used to translate a generic directory to a working directory on gogol, 
an appropriate restriction given that automounted directories should not be explicitly 
referred to by their temporary mount points.


The last item we need to consider is translation rules for node degas. This node is a special 
case in that users do not have permanent home directories there, and are accordingly 
placed in the root directory when they log in. However, the system administrator feels 
that it is undesirable for remote processes to run from the root directory and wants them 
to run from /tmp instead. So, we need to equivalence the working directory we’re using 
to /tmp. Unfortunately, given that there are no subdirectories under /tmp 
corresponding to the various users who might run remote processes on the system, we 
cannot write one simple rule to cover everyone. Instead, user chavez would need to 
include a rule like this one for her working directory within her local map translation 
configuration:


mapfrom /home/chavez/work {


degas : /tmp;


}
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This particular rule facilitates generic-to-remote directory translation, enabling remote 
processes to be started on degas from any other node, using /tmp as the working 
directory. Note that the generic directory we’ve specified is the one to which her home 
directory will be translated from any other node. This rule will work only for user chavez; 
other users would need to construct their own versions.


This rule will not allow chavez to run ntsnet on degas, however, since it uses mapfrom. If it 
were necessary to be able to use degas as the local node, then the rule should be written as 
a map. The preceding diagram illustrates the map translation process using all three rules 
for our sample ntsnet command (executed on flaubert).


We’ve noted that generic directories need not exist as real directory locations. Here is a 
map file entry which takes advantage of this fact:


map special {


chaucer : /u/guest/linda;


blake : /home/guest1/appl/linda;


sappho : /usr/guests/linda/bin;


aurora : /public/bin;


zola : /usr/local/bin;


}


special is not a real directory on any node; this entry defines the specified directories 
on the nodes listed as equivalent. 


Map translation can be disabled by setting the translate resource (application-specific) to 
false (it is true by default), or by using the corresponding command line options 
(-translate/+translate). Remember also that map translation is used only for determining 
executable file locations on nodes for which the setting of rexecdir is parallel. 


mapto mapfrom
flaubert: /u/home/chavez/work


/home/chavez/work


aurora: /home/chavez/work


local remotegeneric


flaubert: /u/home/chavez/work


gogol: /net/aurora/home/chavez/work


blake: /home/chavez/work


chaucer: /u/chavez/work


degas: /tmp


erasmus: /mf/chavez/work


Map Translation
The local directory /u/
home/chavez/work is 
translated to the 
generic directory 
/home/chavez/work, 
which in turn is trans-
lated to the specified 
remote directory for 
each listed remote 
node; a null translation 
occurs for nodes 
aurora and blake 
(as well as for any other 
node not mentioned in 
the map file), leaving 
the remote directory as 
/home/chavez/work.
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Similarly, the remote working directory is determined by map translation of the local 
(current) working directory only for nodes where the rworkdir resource is set to 
parallel (also its default value). In particular, map translation does nothing to 
filenames internal to the application.


Map Translation Entry Wildcards


There are two wildcard characters allowed in map translation file entries:


An asterisk (*)  can be used as a wildcard in local and remote node names.


An ampersand (&) can be used to substitute the current node name within a 
translation.


For example, the following mapto entry handles the most common version of 
automounted directories:


mapto /net {


* : /tmp_mnt/net;


}


It specifies the same remote directory for every remote node for the generic directory /
net. The asterisk wildcard character can be used as above to represent the full node 
name. It can also be used as the initial component of a node name to specify wildcarded 
subdomains: *.medusa.com. No other placement of this wildcard character is 
supported. Here is an example entry using the ampersand wildcard:


mapto /net/& {


sappho : /;


blake : /;


}


These entries map the root directory to /net/hostname for the nodes sappho and blake. 
Thus, the local directory /tests/new on sappho would be mapped to the generic 
directory /net/sappho/tests/new by this entry.


The ampersand character can also be used within the actual translation specifications:


map working {


* : /home/test/work/&;


}
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This example equivalences the directories /home/test/work/hostname for all of the 
nodes within the network. Here is a more complicated example:


map /net/& {


* : /;


}


This entry maps the local root directory on all nodes to the generic directory /net/
hostname (where hostname is replaced by the name of the local node). It also translates 
directories of that form back to their local equivalents when performing translation on 
remote directories, preventing unnecessary automounting.


When wildcarded entries produce multiple matches for a given translation, the longest 
matching string is used. When there are two matching strings of equal length, then the 
more specific match (i.e., containing fewer wildcards) is chosen.


Distributing Executables
ntsnet can distribute executable files prior to program execution. This is controlled by 
setting the distribute resource to true (application-specific). When different executables 
are required for the various remote systems (e.g., executables with different compilation 
options), all required executable files must be in the same directory as the local 
executable, and they will be copied to the target remote execution directories, as 
determined by the specific values set in the rexecdir resource for each node or by map 
translation. The distribute resource is false by default.


The cleanup resource  (application-specific) determines whether remote executables are 
removed after the execution completes. Its default value is true. Note that the local 
executable is never removed, regardless of the setting of cleanup. The cleanup resource 
setting is relevant only when distribute is true. 


The distribute resource may also be set with the -distribute/+distribute command line 
options (both abbreviable to d). The cleanup resource can be set with the 
-cleanup/+cleanup command line options.


Architecture–Specific Suffixes
By default, the names of executable files on all nodes are the same as the executable name 
given on the ntsnet command line. When executables are distributed prior to execution, 
this executable is the one that is copied by default.


However, it’s possible that different flavors of the executable should be run on different 
nodes—ntsnet provides a mechanism for specifying which executable to use based on an 
architecture-specific suffix. For example, ntsnet can be told to use executables having the 
extension .i686 on some nodes and to use ones with the extension .i586 on others.‡


‡ Using this mechanism, it’s even possible to support accidental homogeneity—in which different 
machine architectures support the same data layout, but obviously, great care must be taken here.







60 Using TCP Linda


These suffixes are used when the suffix resource (application-specific) is true (the default 
value). Which suffix to use for a given node is specified by the suffixstring resource 
(application and node specific). The default suffixstring value is the null string, so even 
though suffixes are used by default, this fact has no effect until some specific suffixes are 
defined using suffixstring. 


Here is a section of a ntsnet configuration file illustrating a common use of these 
features:


Tsnet.Appl.Node.rexecdir: parallel


Tsnet.test24.nodelist: chaucer moliere sappho


Tsnet.test24.suffix: true


Tsnet.Appl.chaucer.suffixstring: .athalon


Tsnet.Appl.moliere.suffixstring: .pIII


Tsnet.Appl.sappho.suffixstring: .xeon


Tsnet.test24.sappho.suffixstring: .xOptBlasLib


Tsnet.Appl.aurora.suffixstring: .duron


These entries would result in the following executables being used for these nodes when 
running the application test24 (located in whatever directory resulted from map 
translation):


chaucer test24.athalon


moliere test24.pIII


sappho test24.xOptBlasLib


aurora (local) test24.duron


If the distribute resource for the application test24 is true, then files of these names 
will be copied to the remote nodes prior to execution. Otherwise, they must already exist 
there (in the proper directory). 


The command line options -suffix/+suffix may also be used to specify the value of the 
suffix resource for the current run.
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Specifying the Working Directory for Each Node
The working directory used for program execution on a remote node is also mapped 
from the current directory on the local node if the rworkdir resource (application and 
node specific) is set to parallel for that node. Alternatively, an explicit working 
directory can be set for an application, node, or application-node combination by giving 
an explicit directory as rworkdir’s value.


The -p option can be used to specify a remote directory for both rexecdir and rworkdir in 
a single option. It overrides any other method of setting either resource, including other 
command line options. Note that the old tsnet command requirement of including -p 
with $cwd as its option is no longer necessary. If the current directory is NFS mounted 
on all desired nodes, using the same path everywhere, then a command like this:


$ ntsnet hello_world ...


will work properly (even assuming no settings have been made via the ntsnet 
configuration file). It will run the executable hello_world, located in the current 
directory on all relevant nodes (by default, the nodes in the file tsnet.nodes in the 
current directory if no other provisions have been made), using the current directory as 
the default directory in each case. The -p option is no longer necessary in such cases.


Permissions and Security Issues
ntsnet assumes that all remote systems and directories are accessible. By default, it uses 
the local username for running remote processes. The user resource (node-specific) can 
be used to specify an alternate username on a remote system. For example, the following 
configuration file entry tells ntsnet to use the username guest when running process on 
node sappho:


Tsnet.sappho.user: guest


There is no provision for specifying passwords for use on remote systems. The standard 
TCP/IP mechanisms—the /etc/hosts.equiv file and individual user .rhosts 
files—should be used to assure access. 


ntsnet Worker Process Scheduling


The TCP Linda System provides considerable control over how processes are scheduled 
on remote nodes. ntsnet uses the node list resources we’ve already looked at to determine 
the list of nodes where the application may potentially run. Whether a node is actually 
used depends on a number of other factors, which we’ll examine in turn. 


Forming The Execution Group
The list of potential nodes on which an application may run is determined by the nodelist 
resource; the set of nodes on which an application actually runs is called the execution 
group. ntsnet begins with the node set and successively starts remote processes using the 
scheduling rules described below until a sufficient number of them are running. 
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Technically, the processes started by ntsnet are known as eval servers. An eval server is a 
process started by ntsnet that waits to execute a Linda process. The process on the local 
node is known as the master in this context, and it too eventually becomes an eval server. 
The eval servers on remote nodes (and any additional eval servers on the local node) are 
known as workers. Note that this terminology is independent of the master/worker 
concepts within the application program. When used in this chapter, the terms master 
and worker refer exclusively to the initiating process on the local node and all other eval 
servers started by ntsnet, respectively. 


How many worker processes are desired is controlled by the maxworkers and 
minworkers resources (application-specific). The default values are the number of 
distinct nodes in the nodelist resource (not counting the local node) for maxworkers and 
1 for minworkers. The master attempts to start maxworkers workers when execution 
begins; if at least minworkers eventually  join the execution group, the job proceeds. 
Otherwise execution terminates. 


More specifically, execution will begin according to the following rules:


ntsnet will attempt to start up to maxworkers worker processes. Until the time 
specified by the minwait resource, execution will begin immediately whenever 
maxworkers workers have joined the execution group .


When the minwait interval has elapsed, if at least minworkers have joined the 
execution group, execution will start.


Otherwise, ntsnet will continue trying to create workers until the maxwait interval 
has elapsed (which includes the time already spent in minwait). As soon as 
minworkers workers have started, execution will immediately commence.


Once maxwait seconds have passed and the execution group is still smaller than 
minworkers, the startup process will fail, and execution will not proceed.


The default value for both maxwait and minwait is 30 seconds. The values for maxwait 
and minwait may also be specified using the -wait command line option. Its syntax is:


-wait minwait[:maxwait]


For example, -w 30:60  would set  minwait to 30 seconds and maxwait to a total of 60 
seconds. If -wait is given only a single value as its parameter, then that value is used for 
both resources.


Similarly, the values for maxworkers and minworkers may also be specified using the -n 
command line option. Its syntax is:


-n minworkers[:maxworkers]
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For example, -n 2:4 would set minworkers to 2 and maxworkers to 4. If -n is given 
only a single value as its parameter, then that value is used for both maxworkers and 
minworkers.


Once ntsnet has attempted to start a process on a node, it waits for a message from the 
worker indicating that it has joined the execution group. Only after the master receives 
the join message is the worker added to the execution group and counted toward the 
minimum and maximum number of workers.


The following table summarizes the preceding information. At a given time t, having 
received p join requests, the master process will act as follows:


States & Outcomes p < minworkers minworkers ≤ p < maxworkers p > maxworkers
t < minwait wait wait success
minwait ≤ t ≤ maxwait wait success success
t > maxwait failure success success


Selecting Nodes for Workers
Table 1 lists the resources used to determine whether a node is used for a worker process. 
When it wants to start a new worker process, ntsnet determines which node to start it on 
in the following manner. First, it calculates a new adjusted load for each node assuming 
that the process were scheduled to it, using the following formula:†


(initial_load + (Nmaster * masterload) + (Nworker * workerload)) / speedfactor


This quantity represents a load average value corrected for a variety of factors. The 
various components have the following meanings:


initial_load If the getload resource is true (its default value), this is the load 
average obtained from the node (over the period specified in the 
loadperiod resource). If the remote procedure call to get the load 
average fails, the value in the fallbackload resource is substituted. If 
getload is false, then initial_load is set to 0.


One potential use of the fallbackload resource is designed to prevent 
attempts to start new workers on nodes that have gone down. If the 
RPC to get the load average for a node fails and fallbackload is set to 
a large value, then it will be quite unlikely that the node will be chosen 
by the scheduler. Setting fallbackload to a value greater than threshold 
* speedfactor will ensure that it is never chosen.


Nmaster 1 if the master process is running on the node, 0 otherwise.


† ntsnet makes use of rstatd to gather this information. If this service is not provided on a node, 
default values are assumed.
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masterload The second term in the numerator of the formula for the adjusted 
load means that the value of the masterload resource is added to the 
raw load average if the master process is running on the node. This 
enables an estimate of how the CPU resources the master will 
eventually use to be included in the adjusted load average (even 
though it is not currently consuming them). Set masterload to a 
smaller value than its default of 1 if it does not consume significant 
resources during execution (for example, if it does not itself become a 
worker).


Nworkers The number of worker processes already started on the node.
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workerload The third term of the numerator adjusts the load average for the
number of workers the node already has running, even though they
are not yet consuming substantial CPU resources. You can alter this
value from its default of 1 to reflect your estimate of how much load a
single worker process adds.


Table 1. Process Scheduling Resources


Resource Meaning Default 
Value


Equivalent
 ntsnet Option(s)


Scope


maxprocspernode Maximum number of 
processes that can be run on 
any node. Includes the master 
process on the local node.


1 -maxprocspernode n
-mp n


application-specific


getload Whether or not to use  
current system load averages 
when scheduling workers on 
nodes.


true -getload/+getload application-specific


loadperiod The period  in minutes over 
which to compute load 
averages (when they are used 
for scheduling).


5 -loadperiod mins
-m mins


application-specific


threshold Maximum load allowed on a 
node; if the normalized load 
exceeds this value, then no 
worker will be started.


20 node-specific


speedfactor A number indicating relative 
CPU capacity compared to 
other nodes. Larger values 
indicate increased ability to 
run multiple workers. Used in 
computing the adjusted load 
average.


1.0 node-specific


masterload Load that the master process 
puts on its node (the local 
node). Used in computing the 
adjusted load average.


1 -masterload n application-specific


workerload Load that a worker process 
puts on its node. Used in 
computing the adjusted load 
average.


1 -workerload n application-specific


fallbackload Value to use if ntsnet is 
unable to obtain the current 
system load average. Setting 
this resource to a large value 
will ensure that nodes that are 
down will be excluded.


0.99 -fallbackload n application-specific


available Whether a node is available or 
not; useful for temporarily 
disabling a node without 
removing it from existing 
node sets.


true node-specific
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speedfactor The speedfactor resource’s value is used to normalize the corrected
load averages for differing CPU speeds—and hence different total
capacities—on different nodes. Generally, a value of 1 is given to the
slowest system type within the network. Faster systems will then be
assigned correspondingly higher speedfactor values. Multiprocessor
systems are also given higher speedfactor values, generally set to the
value appropriate for a single CPU multiplied by the number of
processors.


Once all the adjusted loads are calculated, ntsnet finds the node having the lowest value, 
which presumably will be the most lightly loaded when execution begins. It then checks 
its adjusted load against the value of its threshold resource. If the adjusted load doesn’t 
exceed it, ntsnet next checks the number of processes already started. If this number is 
less than the value of the maxprocspernode resource, another process is started; 
otherwise, ntsnet continues on to the next least heavily loaded node. This scheduling 
process continues until maxworkers processes are started or until no qualifying node can 
be found. The goal of the scheduling process is to minimize the load on the maximally 
loaded node.


Here are some sample ntsnet configuration file entries showing the uses of these 
resources:


Tsnet.Appl.getload: true


Tsnet.Appl.loadperiod: 10


! use the default speedfactor of 1 for these systems


Tsnet.Node.slowmach: priestley pinter


! fastguy is 5.25X slowmach


Tsnet.Appl.fastguys: sand stahl


! goethe has 2 heads and gogol has 4; each is 1.5X slowmach


Tsnet.Node.multiprocs: goethe gogol


Tsnet.Appl.nodelist: @slowmach @fastguys @multiprocs


! scheduler parameters


Tsnet.Appl.masterload: .5


Tsnet.Appl.workerload: 1


! maxprocspernode is set high so gogol can get a lot


Tsnet.Appl.maxprocspernode: 8
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Tsnet.stahl.speedfactor: 5.25


Tsnet.sand.speedfactor: 5.25


Tsnet.goethe.speedfactor: 3


Tsnet.gogol.speedfactor: 6


This file attempts to set speedfactor values for the various nodes reflecting their relative 
CPU capacities. The maxprocspernode resource is set to a high value so that the 
multiprocessor system with 4 CPU’s can run up to two workers per processor.


Special Purpose Resources


ntsnet provides several resources for use with various optional features which will be 
described in this section.


Tuple Redirection Optimization
By default, the TCP Linda system uses tuple redirection, an optimization designed to 
improve performance by detecting patterns in tuple usage and attempting to place tuples 
on those nodes where they will eventually be used. If successful, this optimization 
produces significant communications savings. This feature can be disabled by setting the 
value of the redirect resource (application-specific) to false (its default value is true). The 
value of this resource may also be set with the -redirect/+redirect command line options.


Disabling Global Configuration Files
The useglobalconfig and useglobalmap resources (both application-specific) specify 
whether to use the entries in the global configuration file and global map file in addition 
to the local files. In any case, local file entries take precedence over those in the global 
files. The default value for both resources in true. Command line options are available for 
both resources: -useglobalconfig/+useglobalconfig and -useglobalmap/+useglobalmap. 


Generating Additional Status Messages
ntsnet can optionally display informational messages as program execution proceeds. 
Whether and how frequently messages are displayed are controlled by the verbose and 
veryverbose resources (both application-specific). Both are mainly useful for debugging 
configuration and map files, and both default to false. The command line options 
-verbose/+verbose (abbreviable to -v/+v) and -veryverbose/+veryverbose (or -vv/+vv) can 
also be used to specify these resources.


Process Initiation Delays
ntsnet initiates worker processes by running the rsh command in the background on the 
local node, creating each successive process as soon as the previous command returns. 
Under some unusual network circumstances, such a procedure can overwhelm a network 
server process and result in errors. The delay resource is provided to handle such 
situations. It specifies the amount of time to pause between successive rsh command 
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initiations, in milliseconds (the default value is 0). If you experience such problems, try 
setting its value to 1000 (1 second). The -delay command line option may also be used to 
specify the value for this resource.


Appropriate Granularity for Network Applications


A network  environment often has a significantly different granularity profile from other 
parallel computing environments (such as shared or distributed memory multiprocessors) 
because its communications speed is so much slower. This is the result of the differing 
communications bandwidth achievable via Ethernet and typical hardware interconnects in 
parallel computers.  In general, networks impose relatively high communications 
overhead, and parallel programs need to be relatively coarse-grained to achieve good 
performance.


On a typical 100mbs Ethernet network, an out/in combination takes approximately 500 
microseconds, and maximum throughput is about 10MB per second. Thus to out and 
then in a tuple of size S takes about (S/10000000) + .0005 seconds. So a work task that 
invovled 20000 bytes total of input and output data, should run at least 3milliseconds in 
order to justify the communication time, while a task involving a few bytes of input and 
output data should run at least 1 millisecond.


As new network interconnect technology is developed, the granularity effects must be 
re-examined. The use of certain high speed switches, for example, may give networks 
performance characteristics almost identical to distributed memory parallel computers.


Forcing an eval to a Specific Node or System Type


While there is no way within an eval operation itself to force its execution on any 
particular node or type of system, adding an additional function layer in front of the 
target routine can accomplish this. Here is an example:


master()
for (i=0; i < NWORKERS; i++)


eval("worker", do_worker());


do_worker()
{ 


get the hostname or architecture type via standard system call
if (! strcmp(host, "moliere")) worker_1();
elseif (! strcmp(host, "goethe")) worker_2();
elseif (! strcmp(arch, "p4")) p4_worker();
and so on


}


The eval operation calls a generic worker function, do_worker, which determines the 
hostname (or architecture type), and then calls the appropriate real worker function. 
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Debugging TCP Linda Programs


There are two ways of debugging a TCP Linda program:


Use the ntsnet debug option.
Manually start program execution on each node.


This section looks at each method in turn; both discussions assume that you have 
properly prepared executables for use with a debugger by compiling them with -g.


ntsnet’s Debug Mode
The -debug option to the ntsnet command initiates TCP Linda program execution in 
debug mode. Including this option on the command line starts an xterm process running 
the debugger specified by the debugger resource on each participating node. The value 
for the debugger resource defaults to dbx; the other currently-supported debugger is gdb 
(the debugger from the Free Software Foundation). Setting the value for debugger to 
none effectively disables debugging on a particular node, as in this example:


Tsnet.moliere.debugger: none
Tsnet.Node.debugger: gdb


The second configuration file command sets the default value for the debugger resource 
to gdb, while the first line prevents debugging on node moliere. The debugger resource is 
node-specific.


For example, the following command will create three debugging windows executing the 
program test24 on nodes selected from the ntsnet node list in the usual way:


$ ntsnet -debug -n 2 test24


The node and application name will appear in the title bar of each window.


Once all of the debugger processes have started up, you can set breakpoints, run in single 
step mode, examine variables, and perform all other normal debugging functions for each 
process. ntsnet facilitates program initiation by defining the alias lrun within each 
debugging session to be the appropriate command line to begin application execution. 
You should use this alias, rather than the debugger’s normal program initiation command 
(e.g., run in dbx).


Once the program has finished executing, the controlling (master) process will exit and 
the debugger prompt will appear in the corresponding window. However, the other 
(worker) processes will not return. To terminate all program processes, enter the quit 
command to the debugger for the master process, and ntsnet will automatically terminate 
all of the other processes.


The debug resource (application-specific) can be used instead of the command line 
option. A value of true is equivalent to including the command line option (the default 
value is false).
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Hints on running TCP Linda programs in Debug Mode
Keep in mind that each process is handling a portion of tuple space in addition to 
running the application program. Therefore, when a process is paused—for example, at a 
breakpoint—then no tuple space requests can be handled by it. For this reason, it’s best 
to break only a single process at a time, with all other processes either continuing or 
stepping through a (blocked) in or rd operation.


ntsnet relies on the command search path being set appropriately on all remote 
nodes. Specifically, the locations of xterm, the debugger, sh, and rcp(scp) need to 
be in the search path. Note that remote TCP Linda processes are initiated with 
rsh (not rlogin). Hence, make sure that the PATH environment variable is set 
properly even if the login initialization file is not executed. You can test this by 
running rsh manually, and you can ensure this by placing the variable’s definition 
in ~/.cshrc rather than ~/.login if you use the C shell.


In some network configurations, it can be necessary to give remote hosts access 
to the local X server. This is the purpose of the xhost command. You will need 
to run xhost if you see error messages like this one:


Xlib: Client is not authorized to connect to Server


If it is required, you can execute the xhost command manually. For example, the 
form xhost + grants access to the local X server to all remote hosts. You can also 
specify a list of nodes (check the man page for details). 


Alternatively, you can modify the linda_rsh shell script (located in the bin 
subdirectory of the Linda tree), adding the option -access to the xon command, 
which causes the latter script to run xhost automatically.


ntsnet’s debug mode also changes the default values of some other resources:


• The workerwait resource defaults to 1000000 seconds.
• The maxwait resource defaults to 1000000 seconds.
• The nice resource is overridden to be false.


ntsnet ensures a consistent dbx environment across all nodes by copying the 
.dbxinit file from the local node to all participating remote nodes. The dbx 
command ignore IO is also often useful when debugging TCP Linda programs. 
This is not necessary for gdb.
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Running TCP Linda Programs Without ntsnet
TCP Linda programs can also be executed manually by invoking ntsnet with the 
-launchByHand option. These are the steps for doing so:


Establish a session on each desired remote node (via rlogin for example). It will 
be most convenient to start each discrete session in a separate window. In general, 
start as many processes as you would when executing the program with ntsnet. If 
you plan to use a debugger, start it on the desired remote nodes.‡


Run ntsnet -launchByHand ... in a separate session.


In the session where you will start the master process, make sure that the 
LINDA_PATH environment variable is set correctly. It should point to the 
top-level Linda installation directory, and the directory specification must include 
a final slash.


Begin program execution using the commands output by ntsnet (cut and paste 
will reduce errors), one per remote session. These have the general form:


Master
session


application [appl-arguments] +LARGS [linda-args]


Worker
sessions


node-name application +LARGS [linda-args]


where application is the program command, appl-arguments are the application’s 
arguments (if needed), linda-args are any TCP Linda run-time kernel options, and 
node-name is the name of a remote node.


Keep in mind that each process is handling a portion of tuple space in addition to 
running the application program. Therefore, when a process is paused—for 
example, at a breakpoint—then no tuple space requests can be handled by it. For 
this reason, it’s best to break only a single process at a time, with all other 
processes either continuing or stepping over an in operation.


‡ To do so effectively, you need to have compiled the application with -g.
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4
Case Studies


This chapter provides detailed discussions of several real applications parallelized with 
Linda. In some cases, the descriptions will follow the programming process 
recommended in Chapter 1 by first transforming a sequential program into a parallel 
program in a straightforward manner and then, if necessary, optimizing it to produce a 
more efficient parallel program; in others, we’ll focus on topics and issues of special 
importance. Space limitations will not allow for a full treatment of any of these programs, 
but these case studies illustrate many important techniques useful to any programmer 
working with Linda. 


Ray Tracing


Image rendering is a very computationally intensive application. The Rayshade program, 
written in C, renders color images using ray tracing. It is capable of including texturing 
effects to simulate different materials in the image, multiple light sources and types 
(point, spotlight, diffuse), and atmospheric effects like fog or mist. Rayshade computes 
the effects of all of these factors on the image, also taking into account reflections and 
shadows.


This case study illustrates the following techniques:


Dividing the main task among the workers.
Adapting the sequential program structure to the master/worker paradigm.


Rayshade’s main routine is shown below. (As mentioned in the Introduction, we’ve 
removed some sections of code and replaced them with descriptive comments, and we’ve 
ignored others, like declarations, altogether.) 


main(argc, argv)
{


Setup.
parse_options(argc, argv);
read_input_file();
Initialization.
startpic(); /* start new picture */
More setup.
raytrace();


}


After some initial setup, Rayshade processes the command line options, validating them 
for correctness and determining which options have been selected. It then reads in the 
image and then performs some additional initialization steps.
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Next, Rayshade calls the function startpic, which logically creates a new picture, 
followed by some additional setup activities. Finally it calls raytrace which initiates the 
actual rendering.


The bulk of the work is handled by the routine do_trace, called by raytrace:


do_trace()/* called by raytrace */
{


Set sampling parameters.
/* Trace each scanline, writing results to output file. */
for (y = StartLine; y >= 0; y--) {


trace_jit_line(y, out_buf);
outline(out_buf);


}
}


After testing and setting parameters controlling the sampling for this rendering operation, 
do_trace’s main loop executes. For each scan line in the final image, it calls 
trace_jit_line and outline. The former handles the ray tracing computations, 
through many subordinate routines, and outline writes the completed line to a file.


This sequential program already divides its work into natural, independent units: each 
scan line of the final image. The parallel version will compute many separate scan lines in 
parallel. We’ll look at how Rayshade was restructured to run in parallel in some detail.


To begin with, a new real_main routine was created. This is not always necessary; 
sometimes it is best just to rename the existing main to real_main. In this case, main 
was renamed rayshade_main, and real_main calls it. This was done because the 
original main routine needs to be called by each worker process, as we’ll see.


Here is real_main:


real_main(argc, argv)
{


for (i = 0; i < argc; ++i)
strcpy(args[i], argv[i]);


out("comm args", args:argc);
return rayshade_main(argc, argv, 0);


}


real_main’s tasks are very simple: place a copy of the command line arguments into 
tuple space—accomplished by copying them to a local array, which is then used by the 
out operation—and then call rayshade_main with its original arguments and one 
additional new one.


Here is rayshade_main (the additions made for the C-Linda version are in boldface):


rayshade_main(argc, argv, worker)
{


Setup:
parse_options(argc, argv);
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read_input_file();
Initialization:
if (worker)


return;


startpic(); /* Start new picture */
More setup:
raytrace();


}


The third argument is a flag indicating whether the caller is a worker process or not (a 
value of 1 means it is a worker). This flag is used to ensure that the worker exits at the 
proper time, and the remaining initialization steps are executed only at the beginning of 
the job.†


A few lines were also added to parse_options to handle additional options specifying 
the number of workers to use for the parallel version.


rayshade_main still ends by calling raytrace. No changes were made in that 
routine, but a lot was done to the support routine do_trace that raytrace calls.


do_trace becomes the master process in the parallel version of Rayshade. It’s 
important to note that the master does not always need to be the top-level routine 
real_main or even the original main function; any routine can become the master 
process.


Here is do_trace:


do_trace()
{


out("JitSamples", JitSamples);
out("TopRay", TopRay);
for (i = 0; i< Workers; i++)


eval("worker", worker());
out("scaninfo", StartLine);
for (y = StartLine; y >= 0 ; y--) {


in("result", y, ? out_buf:);
outline(out_buf);


}
}


The new version begins by placing two parameters needed by lower level routines into 
tuple space. The worker processes will read them and pass them along to the routines 
that need them. The function then starts Workers worker processes, each running the 
routine worker.


† While this program structure (in which the workers each call the main routine) is unusual, the 
technique of having workers repeat the setup code is not, because it is often faster.
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Once the workers have all started, do_trace creates the task tuple “scaninfo.” As in the 
Freewake example, Rayshade uses a counter tuple to indicate which task—in this case, 
which scan line—should be done next. Here the counter is initially set to the maximum 
scan line number to be computed; each worker will decrement the counter as it grabs a 
task, and when the counter falls below 0, all tasks will be complete.


The second for loop gathers completed scan lines from tuple space, again counting 
down from the maximum scan line number, and sends each one to the output file. The 
lines need to be gathered in order so that they are placed into the file in the proper 
location; they may not arrive in tuple space in that order, however, so do_trace may 
spend some time blocked.


The last piece needed for the parallel version of Rayshade is the worker function:


worker() 
{


rd("comm args", ? args: argc); 
for ( i = 0; i < argc;++i)


argv[i] = (char *)(args+i);
rayshade_main(argc, argv, 1);
rd("TopRay", ? TopRay);
rd("JitSamples", ? JitSamples);
Set sampling parameters.
while (1) {


in("scaninfo", ? y);
out("scaninfo", y-1);
if (y < 0)


break;
trace_jit_line(y, out_buf);
out("result", y, out_buf:Xres);


}
return;


}


The worker begins by reading the command line arguments from tuple space into a local 
array with the rd operation. It then calls rayshade_main to perform the necessary 
initialization and setup activities. It is often just as fast to have workers each repeat the 
sequential program’s initialization process rather than doing it only once and then 
attempting to transmit the results of that process to the workers through tuple space. 


However, when you choose to have the worker repeat the program initialization, it is 
important not to repeat steps that must occur only once. Here, the workers call 
rayshade_main with a third argument of 1, ensuring that picture initialization is not 
repeated. 


The worker function next retrieves the global parameters from tuple space, and sets the 
sampling parameters, using the same code as originally appeared in do_trace.
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Each iteration of the while loop computes one scan line of the final image and places it 
into tuple space for later collection by the master process (executing do_trace). It 
removes the “scaninfo” counter tuple from tuple space, decrements it, and puts it back so 
that other processes can use it. If the counter has fallen below zero, all scan lines are 
finished, the loop ends, and the worker returns (terminating its process).


If the counter is non-negative, the worker generates that scan line by calling the same 
routine used by the sequential program. However, instead of an immediate call to 
outline, the computation is followed by an out operation, placing the results into tuple 
space. Sometime later, do_trace will retrieve the line and then make the call to 
outline to write it to the output file. Meanwhile, the worker has started its next task. It 
will continue to perform tasks until all of them are done.


worker bears a striking resemblance to the original version of do_trace; it adds a call 
to rayshade_main unnecessary in the sequential version, and it lacks only the call to 
outline from its main loop (which remains behind in the master process version of 
do_trace). This separation results from the need to pass data between master and 
workers via tuple space. (It is also much easier to code than sending explicit messages 
between all of the various processes.)


Matrix Multiplication


Matrix multiplication is a common operation central to many computationally intensive 
engineering and scientific applications. We’ve already looked at matrix multiplication in a 
general way in Chapter 1. Here we will look at a couple of approaches to parallel matrix 
multiplication, and conclude by considering when one should—and should not—use 
them. This example again uses C-Linda.


This case study illustrates the following techniques:


Adjustable granularity and granularity knobs.
Deciding where in a program to parallelize.


The basic matrix multiplication procedure is well-known: multiplying an L by M matrix A 
by an M by N matrix B yields an L by N matrix C where Cij is the dot product of the ith 
row of A and the jth column of B. We won’t bother translating this procedure into a 
sequential C program.


Instead, let’s look at a simple, straightforward parallel matrix multiplication. Here is the 
master routine:


real_main()
{


read_mats(rows, columns, L, M, N);


for (i=0; i< NWORKERS; i++)
eval("worker", worker(L, M, N));


for (i=0; i < L; i++)
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out("row", i, rows[i]:M);
out("columns", columns:M*N);


out("task", 0);


for (i=0; i < L; i++)
in("result", i, ?result[i]:len);


}


The function begins by reading in the matrices (we’re ignoring the details of how this 
happens). Next, it starts the worker processes, places each row of A and the entire B 
matrix into tuple space, and then creates the task tuple. Finally it collects the rows of C as 
they are completed by the workers.


The worker process begins by rding the B matrix from tuple space. After doing so, it 
enters an infinite loop from which it will exit only when all tasks are completed.


Each task consists of computing an entire row of C, as specified by the task tuple. The 
worker process retrieves this tuple, increments its value, and places it back into tuple 
space, checking to make sure it is not already greater than the maximum number of rows 
to be computed:


worker(L, M, N)
{


rd("columns", ?columns:len);


while (1) {
in("task", ?i);
if (i >= L) {


out("task", i);
break;


}
else


out("task", i+1);


rd("row", i, ?row:);


for(j=0; j < N; j++)
result[j]=dot_product(row, columns[j*M], M);


out("result", i, result:N);
}
return;


}


The worker next reads in the row of A that it needs. Its final loop computes each element 
of the corresponding row of C by forming the dot product. When all of its entries have 
been computed, the worker sends the completed row of C to tuple space and begins the 
next task. 
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Unfortunately, this version has a disadvantage that not only inhibits it from always 
performing well, but sometimes even prevents it from running at all. It assumes that each 
worker has sufficient local memory to store the entire B matrix. For large matrices, this 
can be quite problematic. For such cases, we could modify the master to place each 
column of B into a separate tuple, and have the workers read them in for each row of A, 
a column at a time, but this would add significant communications overhead and 
probably yield poor performance. Instead, a more flexible program is needed where the 
amount of work done in each task can be varied to fit memory limitations and other 
restrictions imposed by the parallel computing environment.


Here is a version which fulfills this goal:


master(L, M, N)
{


Allocate memory for matrices.
Read in matrices.


/* put matrices into tuple space */
for (i = 0; i < L; i += clump, 


rows += M*clump, columns += M*clump) {
out(i, "rows", rows:M*clump);
out(i, "columns", columns:M*clump);


} 


/* start workers and make first task */
for (i=0; i < workers; ++i)


eval("worker", worker(L, M, N, clump));


out("task", 0);


for (i = 0; i < L; i += clump, result += M*clump)
in("result matrix", i, ? result:);


}


The master begins by allocating memory for and reading in the matrices. Next, it places 
the matrices into tuple space in chunks, each of which is clump rows or columns‡ of its 
matrix. clump functions as a granularity knob in this program: a parameter whose value 
determines the task size, at least in part. Changing clump’s value directly affects how 
large each chunk is. 


The master then starts the workers and creates the task tuple as before. Its final loop 
retrieves the result matrix (C) from tuple space, again in chunks of clump rows. Code to 
reassemble C from these chunks is omitted.


‡ Both versions of this program assume that A is stored by row in the rows array, and B is stored 
by column in the columns array. Such a strategy makes accessing the proper elements of each one 
much easier.
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Here is the corresponding worker function:


worker(L, M, N, clump)
{


Allocate memory for matrix chunks.
while (1) {


in("task", ? rows_index);
if (rows_index < L) 


out("task", rows_index + clump);
else {


out("task", L);
return;


}


rd(row_index, "row", ?row:);


for (col_index = 0; col_index < N; col_index += clump) {
rd(col_index, "columns", ? columns:);  
for (r = 0; r < clump; ++r) {


result_ptr = result + ((r + col_index) * M);
for (c = 0; c < clump; ++c){


dot = 0;
rp = rows + (r * M); 
cp = columns + (c * M); 
for (i = 0; i < M; ++i, ++rp, ++cp)


dot += *rp * *cp;
*result_ptr++ = dot;


}
}


}
/* Put a block of the result matrix into tuple space */
out("result", rows_index, result:M*clump);


} /* end while */
} /* end worker */


The worker begins by retrieving a task (and exiting if all tasks are already done). It reads 
the corresponding tuple from tuple space (containing clump rows of A). It then reads 
the columns of B, in chunks of clump columns at a time (as they have been partitioned 
into tuples). For each chunk, all corresponding elements of the result matrix are 
computed; when all of the chunks of the columns array (holding B) have been read and 
processed, the worker sends the completed chunk of the result matrix to tuple space and 
begins the next task.


The variable clump can get its value in any number of ways: from a preprocessor 
variable, from a command line argument, as some function of the sizes of the matrices, 
and so on. It allows you to adjust program execution in a number of ways. For example, 
if local memory for worker processes is limited, clump could be chosen so that the 
portions of A and B a worker held at any given time (2*clump*M total elements) would 
fit within the available amount. Or if the program were running on a network containing 
processors of greatly differing speeds, then it might sometimes be preferable to make the 
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task size smaller so that there are enough total tasks to keep every processor busy for 
essentially the entire execution time (with faster processors completing more tasks in that 
time). Building such adjustability into a program is one way to ensure easy adaptability to 
different parallel computing environments.


Even this version makes some optimistic assumptions, however. For example, it assumes 
that the master process has sufficient memory to read in both matrices before sending 
them to tuple space. If this assumption is false, then the disk reads and out operations 
would need to be interleaved to minimize the amount of data the master has to hold in 
local memory.


We’ll close this consideration of parallel matrix multiplication by looking at a case where 
one might not want to use it. Here is a portion of a subroutine from a computational 
chemistry program (written in Fortran):


Subroutine gaus3(x,n)


Loops containing many independent exponentials
call matrix_multiply(chi,coo,psi)
call matrix_multiply(chix,coo,gx)
call matrix_multiply(chiy,coo,gy)
call matrix_multiply(chiz,coo,gz)
call matrix_multiply(chid2,coo,d2)
Return
End


Here are five independent matrix multiplication operations. Certainly, it would be nice to 
produce a parallel version of this program, but the question is: where to parallelize? We 
could replace each matrix multiplication call with a parallel version, or execute all five 
calls simultaneously. In some circumstances, each of these solutions will be the right one.


Here, however, we’d also like to execute some of those exp calls in parallel as well, which 
would tend to favor the second approach: creating a parallel version of gaus3 that might 
very well use a sequential matrix multiplication routine.


There is a third possibility as well. gaus3 is itself called a large number of times:


Do 10 I=1,npts
call gaus3(x,m)


10 Continue


and again the calls are independent of one another. It might be possible to execute some 
of these calls in parallel, leaving gaus3 essentially untouched. Whether this is a good idea 
or not depends on the likely value of the loop’s upper limit, npts. If npts is typically, 
say, 8, then parallelizing at this point will limit the number of processor which the 
program could take advantage of to 8, and so it is probably better to parallelize gaus3 
itself. If, on the other hand, npts is typically 500000, then this is a perfectly good place 
to focus attention, and the job will be much simpler as well.
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Database Searching


This case study looks at a generalized database search program. What the particular data 
records are is less important than the general issues all such searches raise, many of which 
are applicable to other types of problems as well. Readers wanting a more rigorous and 
specific treatment of this topic should consult Chapters 6 and 7 of How to Write Parallel 
Programs by Carriero and Gelernter.


This case study discusses the following techniques and issues:


Distinct task tuples.
Using watermarking to avoid overwhelming tuple space.
Task ordering to aid in load balancing.
Dealing with unequal task sizes.


Here is a simple sequential program (in Fortran) to search a database:


Program DB_Search


Call Get_target(target)
10 Call Get_next(DB, rec)


If (rec .EQ. EOF) go to 100
Call Compare(target,rec,result)
Call Process(result)
Goto 10


100 Continue


This program compares a target record (or key) against records in a database. The 
following discussion assumes that the operation of comparing two data records takes a 
substantial amount of time. Many such database applications exist, including ones 
designed for DNA sequence searching, credit application retrieval, and many other sorts 
of complex string matching.


The program hides all the details of the operation in its component subroutines: 
get_next_record retrieves another record from the database, compare compares 
the record to the target, and process takes compare’s result and keeps track of which 
records have matched (or come closest to matching) so far. When all relevant records 
have been tested, output will print the final results.


This version could search any kind of database, given appropriate versions of 
get_next_record, compare, and process. get_next_record could be 
implemented to return every record in the database in sequential order, or according to 
some sorting criteria, or it could return only selected records—those most likely to match 
the target, for example (think of searching a database containing fingerprints).
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compare might return a yes or no answer, depending on whether target matched the 
current record or not, or it might return some value indicating how close a match the two 
were. In the first case, process would only need to keep track of positive results—
matches—while in the second it would probably want to report on some number of best 
matches at the conclusion of the program.


Transforming this program into a parallel version is fairly straightforward. Each task will 
be one comparison. This time, we’ll use one tuple for each task, holding the actual 
database record, rather than a single counter tuple. Here is the parallel master routine:


Subroutine real_main


Do 10 I=1,NWORKERS
eval('worker', worker())


10 Continue
Call Get_Target(target)
out('target', target)


NTasks=0
20 Call Get_Next(DB,Rec)


IF (Rec .EQ. EOF) Go TO 30
out('task', rec, OK)
NTasks=NTasks+1
Goto 20


30 Do 40 I=1,NTasks
in('result', ?res)
Call Process(res)


40 Continue


DO 50 I=1,NWORKERS
out('task', dummy, DIE)


50 Continue
Return
End


This program first starts the workers, gets the target, and places it into tuple space. Then 
it loops, retrieving one record from the database and creating a corresponding task tuple 
until there are no more records. Then it retrieves the results generated by the workers 
from tuple space and hands them to process.


Finally, in its final loop, the master process generates one additional task tuple for each 
worker. These tasks serve as poison pills: special tasks telling the workers to die. The task 
tuple’s third field holds either the value represented by OK, meaning “this is a real task,” 
or the one represented by DIE, meaning terminate.
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Here is the corresponding worker:


Subroutine worker


rd('target', target)


DO While(.TRUE.)
in('task', rec, flag)
If (flag .EQ. DIE) Goto 100
Compare(rec, target, result)
out('result', result)


EndDo
100 Continue


The worker loops continuously, reading tasks and comparing records, placing the results 
into tuple space for the master to gather later, until it encounters the poison pill, at which 
point it exits.


Straightforward as this version is, it has some potential pitfalls. The most serious occurs if 
the database has large records, or large numbers of records, or both. In either case, the 
master could easily generate tasks much faster than the workers could complete them, 
and fill up tuple space in the process, causing the program to run out of memory and 
terminate.


A technique known as watermarking can provide protection against this eventuality. 
Watermarking involves making sure that there are no more than a fixed number of task 
tuples at any given time (the high water mark, so to speak). Once this limit is reached, the 
master process must do something else—such as gathering results—until the number 
reaches a lower bound (the low water mark), at which time it can go back to creating 
tasks. When the number of tasks once again reaches the upper bound, the process 
repeats.


Here is a version of the master process with watermarking:


20 Call Get_Next(DB,Rec)
IF (Rec .EQ. EOF) Go TO 30
out('task', rec, OK)
NTasks=NTasks+1
IF (NTasks .LE. UPPER_BOUND) Goto 20
DO While(NTasks .GT. LOWER_BOUND)


in('result', res)
Call Process(res)
NTasks=NTasks-1


EndDo
Goto 20


30 Do 40 I=1,NTasks
in('result', ?res)
Call Process(res)


40 Continue
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Creating a new task increments the ntasks counter. Once it reaches its maximum value, 
the master switches over to gathering and processing results, decrementing the ntasks 
counter, which now holds the number of outstanding tasks, since every time the master 
finds a result tuple, it can be sure a task has been consumed. When the number of 
outstanding tasks reaches its minimum allowed value, the do loop ends, the master 
begins to make new tasks, and the process begins again.


After all needed tasks have been created, the master still needs to gather any remaining 
results from tuple space, which is the purpose of the second while loop.


UPPER_BOUND and LOWER_BOUND allow this program to adapt to its environment. 
Their values can be adjusted based on the size of tuple space, on the sizes of individual 
database records of the database as a whole, on the relative speeds of the 
get_next_record, compare, and process functions, and so on.


It can be as important to make sure that there are enough tasks in tuple space as to make 
sure there aren’t too many. When there aren’t enough tasks to keep all the workers busy, 
then work starvation sets in, and performance diminishes. Thus, if LOWER_BOUND were too 
low, there might be periods where workers would actually have to wait for their next task, 
a condition which is virtually never desirable.


Load balancing is another consideration that often comes into play. This program will 
perform fine if all of the comparisons take about the same amount of time, as would be 
the case when comparing fingerprints. However, there are many cases where different 
comparison operations take vastly different amounts of time—comparing DNA 
sequences, for example. In such cases, the program must ensure that the more time 
consuming comparisons do not become the rate limiting steps in the entire job. For 
example if the comparison which took the longest was started last, the other workers 
would all finish and sit idle waiting for it.


Sometimes, such problems can be avoided by paying attention to the order in which 
records are obtained, for example, by making get_next_rec more sensitive to task size 
in our example. This can complicate get_next_rec a great deal, to the point where it 
too would benefit from becoming a parallel operation. Of course, the same kinds of 
considerations hold for the routine process as well.


At other times, it is the comparison itself that needs to be parallelized. It may not be 
sufficient to perform several comparisons at once when an individual comparison takes a 
very long time.


In either of these cases, it will not be possible to take the generic approach to database 
searching that we have here. Rather, the specifics of the comparison or record retrieval or 
results processing algorithms will have to be examined explicitly, and creating a parallel 
version of one or more of them will be necessary to achieve good performance. In 
Chapter 7 of their book, Carriero and Gelernter present an elegant combination database 
searching program that parcels out small comparisons as a whole and divides large ones 
into discrete pieces.
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Molecular Dynamics


Molecular dynamics calculations are performed to simulate the motion within molecules 
over time. This method is used to study the very large molecules of commercial and 
biological interest, typically containing thousands of atoms. The atoms in these molecules 
are constantly in motion; this movement results in changes in the overall molecular 
structure, which can in turn affect the molecule’s properties. A molecular dynamics 
simulation calculates the changing structure of a molecule over time in an effort to 
understand and predict its properties. These calculations are carried out iteratively, 
solving for the total molecular energy and the forces on and positions of each atom in the 
molecule for each time step. In general, an atom’s position depends on the positions of 
every other atom in the molecule, making molecular dynamics calculations require 
significant computational resources. 


This case study illustrates the following techniques:


Per-iteration worker wakeup.
Cleaning up tuple space.
Distributed master functions.


Since the original program for this case study is very long, we’ll only look at the central 
portions as we examine how it was parallelized with C-Linda. This program required 
changes to several key routines, and illustrates using C-Linda to parallelize the calculation 
setup work as well as the computation core. 


The diagram below presents a schematic representation of the sequential version of the 
computation:


After performing some initial setup steps in which it reads in and stores the data for the 
calculation and calculates the sums of special charges and some other quantities for the 
molecule, the program enters its main loop. For each time step—one loop iteration—the 
program must calculate the bonded and nonbonded interactions among all of the atoms 
in the molecule. The bonded interactions occur between atoms that are directly 
connected together by a chemical bond, and the nonbonded interactions are the effects 
of atoms that are not bonded upon one another’s position. The latter take up the bulk of 
the time in any molecular dynamics calculations because they are both more numerous 
and more complex than the bonded interactions.







Molecular Dynamics


Linda User Guide 87


Here is a simplified version of the original main routine:


main(argc,argv)
{


T = 300.0. 
process_args(argc,argv);
Read data.
Initialize parameters & data structures.


verl_init(str,coor,vel,s);
Te = temperature(str,kinetic_energy(str,vel));
verl_scale(coor,sqrt(T/Te));


for (i=0; i < NSteps; i++) {
verl_step(str,coor,vel,s);
Te = temperature(str,kinetic_energy(str,vel));
verl_scale(coor,sqrt(T/Te)); 


} 
exit(0);


}


The key routines here are verl_init, which performs the setup work, and 
verl_step, which oversees the calculation at each time step. The actual computations 
are performed by routines called from these functions. As we’ll see, it is in the latter that 
the major changes for the C-Linda version appear. 


For this molecule, the oxygen atom’s 
only bonded interaction is with the 
carbon atom it is connected to. A 
molecular dynamics calculation will 
also compute the effects of its 
nonbonded interactions with every 
other atom in the molecule. 


Sequential Version of the Molec. Dyn. Program & Bonded vs. Nonbonded Interactions
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The following diagram illustrates the structure of the parallel version of the molecular 
dynamics program. The master still does much of the initial setup work, but one step, 
summing the special charges, is divided among the workers. Once the master has 
gathered and processed the workers’ results from the setup phase, the main calculation 
loop begins. Some parts of it remain with the master; in fact, the nonbonded interactions 
so dominate the execution time that it is not worth parallelizing any of the other steps.
 


For each loop iteration, the master calculates the bonded interactions and other energy 
terms, and then divides the work of the nonbonded interactions among the workers, 
placing the data the worker will need into tuple space. Eventually, the master gathers the 
workers’ results, using them along with the quantities it computed itself to calculate the 
new position and velocity for each atom in the molecule. 


Here is real_main, which is a renamed version of the original main:


real_main(argc,argv)
{


T = 300.0;
process_args(argc,argv);


Structure of the Parallel Molecular Dynamics Program
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/* startup workers */
for (i = 0; i < num_workers; i++)


eval("worker", nb_energy_worker(i), num_workers));


Read data.
Initialize parameters & data structures.


verl_init(str,coor,vel,s);
Te = temperature(str,kinetic_energy(str,vel));
verl_scale(coor, sqrt(T/Te));
for (i=0; i < NSteps; i++) {


verl_step(str, coor, vel, s);
Te = temperature(str, kinetic_energy(str, vel));
verl_scale(coor, sqrt(T/Te)); 


} 


/* kill workers & clean tuple space */
for (i = 0; i < num_workers; i++){


out("wakeup", -1, i);
in("worker", ?int);


}
lexit(0); /* use C-Linda exit function */


}


The only changes here are the two loops which create and terminate the worker 
processes. The first for loop consists of num_workers eval operations. Each worker is 
passed a unique integer as its argument, its worker ID number, so to speak. It will use this 
value to retrieve its own task from tuple space. 


The final for loop creates one “wakeup” task per worker, with its second field set to -1. 
This is a poison pill, telling the worker to exit. The loop also retrieves the passive data 
tuple the worker emits as it dies before generating the next poison pill. This ensures that 
the master process will not terminate until all the workers have.


If the speed of the shutdown process were important, then the in operations could be 
placed in their own loop, so that all of the poison pills would be generated essentially at 
once. Then, the workers die in parallel, with the master collecting the “worker” data 
tuples only after generating all of the poison pills.


In this program, there is no master routine per se; rather, the master functions are split 
among three routines: 


real_main, which creates and terminates the workers.


nb_setup_energy, which places global (i.e., non-iteration specific) data into 
tuple space and controls the parallel special charges calculation.
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nb_energy, which controls the nonbonded interaction energy calculation for 
each iteration.


Here is nb_energy_setup:


void nb_energy_setup(str,coor,count)
{


Perform sequential setup work.
/* global data all workers get once */
out("A", (str->A):, "B", (str->B):, 


"pack_atc", packatomtc:str->n+1);


/* taskav=(total work/#workers) = target pairs per worker */
taskav = (nb_num) * (nb_num-1) / 2 / num_workers;


/* create worker tasks: 
 * start = beginning of worker’s domain
 * outsize = size of worker’s section */
for (index=1,w_id=0; w_id < num_workers; w_id++){


start = index; /* increments of index follow. */


/* compute start & length for this worker. tasksum holds the
 * number of pairs given to this worker so far. increment it
 * with each successive value of index (= size of current 


  * matrix row) until task >= target or we’re out of pairs. */
for (tasksum=0;


tasksum <= taskav && index < nb_num+1;
index++)


tasksum += index;


if (w_id == num_workers - 1) /* last worker */
outsize = nb_num + 1 - start;


else
outsize = index - start;


/* start workers’ initialization phase */
out("nbwconfig", wId, start, outsize,


nb_num, expfac, confac);
Fill worker-specific data arrays and send to tuple space.


} /* end worker init loop */


/* get partial q-sums and nb_list size calculated by workers*/
qasum = qbsum = 0.0;
for (i=0 ; i < num_workers; i++){


in("qsum", ?uasum, ?ubsum, ?ucount);
qasum += uasum;
qbsum += ubsum;
*count += ucount;


}







Molecular Dynamics


Linda User Guide 91


Finish initialization.
return;


}


After performing the same initial setup steps as the sequential version, the parallel version 
of nb_energy_setup places some global data in tuple space.


The majority of the code shown in this routine is concerned with dividing the work up 
among the worker processes. The tasks created here define the range of the data each 
worker is responsible for. This represents a somewhat different technique from the usual 
master/worker scenario. In the latter, the work is divided into tasks which are 
independent of any particular worker, and each worker grabs a task when it needs one. 
Here, the total work is divided among the workers at the beginning of the calculation; the 
work each worker does is essentially part of its structure—in this case, a function of its 
worker ID number. This technique of dividing the problem space into discrete chunks 
and assigning each to one worker is known as domain decomposition. The parameters 
calculated here and communicated to each worker via tuple space will be used in both the 
summing of special charges done in the setup phase (with results collected at the end of 
this routine), and in the actual nonbonded interactions computation later in the program.


The scheme for dividing the work here is somewhat complex, but it is designed to ensure 
good load balancing among the worker processes—this is always a concern when a 
domain decomposition approach is taken.


For a molecular dynamics calculation, the total number of nonbonded interactions for an 
N-atom molecule is approximately N*(N-1)/2, and so we want each worker to do about


(N*(N-1)/2) / num_workers


of them. If there are N atoms, there are N2 possible interactions, but we throw out pairs 
where an atom is interacting with itself. The factor of 1/2 comes from the fact that the 
interactions are symmetric (A’s effect on B is equivalent to B’s effect on A) and thus only 
need to be computed once. We should also remove bonded pairs, but if this number is 
small compared to the total number of interactions, then our formula is a reasonable 
approximation to the ideal number of interactions per worker. 


In some cases, the total work can just be divided as evenly as possible among the 
workers. Here, we might like to just give each worker the number of interactions we 
computed above, correcting the last worker’s amount for any remainder and other integer 
rounding we had to do. However, the interaction pairs are actually stored as rows in a 
lower triangular matrix (a matrix with all of its non-zero elements on or below the 
diagonal), and for maximal efficiency, we want to give only complete rows of the matrix 
to each worker. Given this constraint, it is necessary to figure out how many rows to give 
each worker so that the number of elements each one gets comes out about the same 
(and close to the target number). 


To do so, the program uses the fact that there are I non-zero elements in row I of a lower 
triangular matrix, and assigns consecutive rows to each successive workers until the 
number of elements it has exceeds the target number, or until all the rows are gone. This 
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simple heuristic works quite well so long as the number of workers is much, much 
smaller than the number of atoms, a condition invariably satisfied by real world molecular 
dynamics problems.


Once the starting position (in the variable start) and the length (outsize) have been 
computed, the “nbwconfig” tuple is sent to tuple space; its second field is workerid, 
the worker’s ID number assigned at startup. The tuple’s final three arguments are the 
total number of atom pairs and two constants.


The final for loop in the routine gathers the results of the special charges calculations 
performed in parallel by the workers. The partial results, from the “qsum” tuple, are 
summed up by nb_energy_setup and used in the remaining (sequential) initialization 
activities, after which the routine returns. 


Before continuing with the main thread of the computation, let’s look briefly at the 
beginning of the worker function, nb_energy_worker:


/* in the configuration for each worker */
in("nbwconfig", workerid, ?start, ?outsize,


?nb_n, ?expfac, ?confac);
if (workerid != num_workers-1) {


rd("A", ?A:, "B", ?B:, "pack_atc", ?a:len);
out("done_reading");


} else {
for (rdct = 1; rdct < num_workers; rdct++)


in("done_reading");
in("A", ?A:, "B", ?B:, "pack_atc", ?a:len);


} 


These statements retrieve the “nbwconfig” task tuple and the global values tuple from 
tuple space. After it starts up, the worker will block until the “nbwconfig” tuple is 
available. The appearance of this tuple is a trigger that initiates active computation. It is in 
this sense that we refer to it as a wakeup for the worker, causing it to resume active 
execution after a significant pause (“sleep”).


The if statement checks whether this is the worker with the highest worker ID. If not, it 
rds the globals tuple, and then creates a “done_reading” tuple. If it is the last worker, then 
it ins all the “done_reading” tuples from the other workers and then ins the globals tuple, 
removing it from tuple space. This technique is useful when you want to remove large, 
unneeded sets of data from tuple space or when some data must be removed because 
new or updated versions will replace it. We’ll see an example of the latter later in the 
program. 


The worker next computes its portion of the special charges sum, and dispatches the 
results with an out operation. It then enters its main infinite while loop, performing a 
few data initialization operations for the coming nonbonded interaction calculation, and 
then waiting for its next wakeup tuple, again tied to its worker ID and appropriately 
labelled “wakeup”:







Molecular Dynamics


Linda User Guide 93


qasum = qbsum = 0;
Calculate new values.
out("qsum", qasum, qbsum, count);


while(1){
evdw = elec = esup = 0.0;
count = 0;
for(i=0; i <nb_n+1; i++){


force_update_i = &(force_update[i]); 
force_update_i->x = 0.0;
force_update_i->y = 0.0;
force_update_i->z = 0.0;


}
in("wakeup", ?wakeflag, workerid);


}


Keep in mind that this code executes at the same time as the master routine for this part 
of the calculation nb_energy_setup, which itself waits for the workers to place their 
partial sums into tuple space.


If we return our focus to the master program thread, once the initialization phase is 
complete, real_main enters its main loop. The routine verl_step begins each 
iteration; eventually, control passes to the routine nb_energy. The sequential version of 
this routine computes the nonbonded interactions; the parallel version of nb_energy 
performs the master functions for this part of the calculation.


nb_energy begins by initializing some variables and then sending out the “wakeup” 
tuple for each worker along with the current coordinates of the atoms in the molecule:


void nb_energy(str,coor,force,evdw,elec,esup)
{


*elec = *evdw = *esup = count = 0.0;


/*wake up workers */
for (workerid = 0; workerid < num_workers; workerid++)


out("wakeup", workerid, workerid);


/*send out current coordinates on each round */
out("coor", coor->c:str->n + 1);


The worker, who has been waiting to receive the “wakeup” tuple, retrieves it and checks 
the value in its second field. If this value is not -1, then the next time step commences. 
The worker next obtains the current coordinates of the atoms:


in("wakeup", ?wakeflag, workerid);
if(wakeflag == -1) return 0;/* eat poison and die */ 
if(workerid != num_workers-1){


rd("coor", ?c:len);
out("read_coords");


} else {
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for (rdct = 1; rdct < num_workers; rdct++) 
in("read_coords");


in("coor", ?c:len);
}


Most workers rd this tuple; however, the last worker waits until all the other workers have 
rd it (using the same technique of gathering semaphore tuples we saw earlier) before 
removing it from tuple space with the in operation. In addition to freeing the memory, 
this is necessary so that the new coordinates can be unambiguously transmitted to tuple 
space on the next iteration. 


The worker then calculates the nonbonded interactions for its pairs of atoms. It uses 
code differing only in its loop limits from that in the sequential version of nb_energy:


for (i=0, gi=start ; i < outsize; i++, gi++) {
do many computations...


}


The initial value of the variable gi and the limit against which the variable i is tested 
were both obtained from the “nbwconfig” tuple. Once this calculation is complete, the 
worker sends its results to tuple space:


out("workerdone", fu:start+outsize, elec, evdw, esup, count);


It then waits for the next wakeup tuple commencing the next iteration of its while loop; 
eventually, it retrieves a poison pill and exits.


nb_energy ultimately gathers the “workerdone” tuples and merges their results into the 
arrays used by the remainder of the (unaltered sequential) program. The calculation then 
continues as in the sequential version, with the final calculated energies corrected for 
temperature at the end of each iteration.


Once all time steps have been competed, real_main kills the workers and cleans up 
tuple space, finishing the master functions it started when the program began. As we 
have seen, master responsibilities are distributed among three separate routines in this 
program, each controlling a different phase of the calculation.
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5
Using Tuplescope


Tuplescope is an X-based visualization and debugging tool for Linda parallel programs. 
In addition to the usual debugger features such as single-step mode and breakpoints, 
Tuplescope can display tuple classes, data in specific tuples, and visual indications of 
process interaction throughout the course of a program run.


Linda programs are usually debugged using the Code Development System and 
Tuplescope. This combination offers the most convenient and least intrusive method of 
debugging. Tuplescope is part of the Linda Code Development System, which simulates 
parallel program execution in a uniprocessor environment. It requires a workstation 
running X Windows. This chapter assumes knowledge of standard debuggers and 
debugging activities. Refer to the manual pages for your system or to the relevant books 
in the Bibliography for information on these topics.


Program Preparation


Linda programs must be compiled with the -linda tuple_scope option to use Tuplescope. 
The environment variable LINDA_CLC or LINDA_FLC should also be set to cds (for 
Code Development System). For example, the following commands will prepare the 
C-Linda program test24 for use with Tuplescope†:


% setenv LINDA_CLC cds
% clc -o test24 -linda tuple_scope test24.cl


Invoking Tuplescope
Once an executable has been prepared for use with Tuplescope, simply invoking it will 
start the debugger. For example, the following command would initiate a Tuplescope 
session with the test24 application we prepared above:


% test24 arguments


Of course, this command would need to be run from a shell window within an X 
Windows session. If desired, you may also include X Toolkit options following the 
program arguments to customize the resulting Tuplescope windows.


† If you use the Bourne shell, the equivalent commands are: LINDA_CLC=cds; export 
LINDA_CLC.
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The Tuplescope Display


Below is a canonical diagram of the Tuplescope display (note that exact window 
properties and look depend on the window manager in use).


The Tuplescope display consists of two parts: the control panel window and separate 
windows for each tuple class (tuple classes consist of the compiler-generated distinct 
partitionings of tuple space, based upon tuple field types and any unique constant 
strings). Note that the display above is deliberately artificial and was constructed to 
present all of Tuplescope’s features in a compact form rather than to represent any real 
(or even possible) situation.


The Control Panel
The control panel is a separate Tuplescope window that contains these items:


The name of the executable, appearing on both the window title bar and in a box 
in the upper left of the display.


A row of menu buttons along the top of the window, labeled Modes through Quit. 
Click a menu button to display its associated menu (if any) or perform its 
designated action.


A slider control bar in the upper right corner of the window that has a sliding bar 
that moves along a tick-marked area. The default position for the slider is at the 
far right end of the bar, which represents normal (full) speed. Moving the slider 
to the left causes program execution to proceed at a slower rate. You can use the 
slider at any time during program execution to change the execution speed. 
Slower execution rates represent a middle ground between single -step execution 
mode, in which execution breaks at every Linda operation, and normal full-speed 
execution.
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A row of buttons for the tuple class window at the bottom left of the control 
panel. Click on a button to open its corresponding tuple class window. Buttons 
for currently open tuple class windows are grayed out.


When a process is initiated with an eval, an icon for it briefly appears above the tuple 
class window icons. This icon is a white-outlined black box containing a white number 
within it; in the diagram, the sample icon contains the number 2. This number functions 
as a sort of internal process ID and is incremented every time a new process is created; it 
does not correspond to any user-assigned numbering scheme. Once the process 
performs an operation on tuple space, this icon disappears and the appropriate icon 
appears in one of the tuple class windows.


Tuple Class Windows
A tuple class window has the following parts:


A sizing box (black with two white veins), located in the upper left corner of the 
window controls the size of the window. Click the box to choose minimum, 
medium, or maximum window size:


Mouse Button Effect
Left Make the window minimum size
Middle Make the window medium size 
Right Make the window maximum size


A textual representation of the tuple class, positioned to the right of the sizing 
box. This shows the tuple class’s structure. Here is an example:


("globals", INT, INT)


Clicking with the left mouse button on the tuple representation string will close 
the tuple class window.
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Spherical icons for each tuple that exists in this class. Left-clicking on a tuple 
opens a small window that displays its contents. For example:


("globals" 1000 225)


If a tuple contains a large amount of data, scroll bars will appear, and you can 
scroll through it, viewing one part of it at a time. You can also scroll with the 
keyboard arrow keys:


Key Scrolling Effect
Up arrow Scroll to previous line
Down arrow Scroll to next line
Ctrl-up arrow Scroll to previous page
Ctrl-down arrow Scroll to next page
Left arrow Move to the beginning of the tuple
Right arrow Move to the end of the tuple


If the tuple contains an aggregate, by default the aggregates’s contents is not 
shown; instead, the word BLOCK appears. The Modes and Aggregates menus 
control the display of aggregates (see Viewing Aggregates below).


Clicking on an individual tuple window with the right mouse button will refresh 
its contents; clicking on it with the left mouse button will close it.


Icons for processes that have accessed tuples in this class. The form of the icon 
varies depending on the operation that the process performed and its status. 
These are the possible icons (all icons display the process number in their center):


Icon Appearance Meaning
Solid black arrow pointing up Successful in operation
Solid black arrow pointing down Successful out operation
White arrow in black box pointing up Successful rd operation
Solid black diamond Blocked in operation
White diamond Blocked rd operation


There are examples of each type of icon in the Tuplescope display diagram.


Viewing Aggregates
The Display Aggregates item on the Modes menu controls the display of aggregates. 
Click the Modes button to display its menu, and click the Display Aggregates item to 
toggle its current state. If the item is selected, a check mark appears to the left of its 
name. You must select the Exit Modes Menu item to close the modes menu.
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When Display Aggregates is on, the Aggregates menu button is active, and you can use its 
menu to select the data format for subsequent aggregates displays. It contains the choices 
Long, Short, Float, Double, Character, and Hexadecimal. Only one format choice is 
active at a given time; a check mark appears to the left of its name. All other formats are 
grayed out and unavailable. The default format is Long.


To select a different format, first deselect the current format by choosing its menu item. 
The check mark will then disappear, and the other formats will become active. You may 
then select the desired format. Exit from this menu by choosing the Exit Aggregates 
Menu item.


What format a tuple containing an aggregate uses depends on the Dynamic Tuple Fetch 
setting on the Modes menu. If Dynamic Tuple Fetch is active, then an aggregate is 
displayed in the current Aggregates menu display format when you click on its tuple icon. 
If Dynamic Tuple Fetch is not in effect, then the format that was in effect when the tuple 
entered tuple space will be used regardless of the current setting.


Viewing Process Information
Clicking on a process icon displays a scrollable file window containing the text of the 
source file corresponding to it. (Tuplescope requires source files to be in the current 
working directory). The line containing the tuple space operation corresponding to that 
icon is indicated by a caret (''^''). Scroll bars or the keyboard scrolling keys can be used to 
examine the source file. To close the window, click the left mouse button anywhere 
within it.


Tuplescope Run Modes


Tuplescope has a number of different modes for program execution. First, execution 
speed can be controlled with the slider control on the Tuplescope control panel discussed 
previously. This is independent of the other run controls we’ll look at in this section.


Clicking on the Run button will commence program execution. The program will execute 
in either normal or single step mode, depending on the setting of the Single Step item on 
the Modes menu. When single-step mode is in effect, Tuplescope executes until the next 
Linda operation takes place. Tuplescope assumes that required source files are in the 
current directory.


It is not possible to execute a program more than once within a single Tuplescope 
session. To rerun a program, exit Tuplescope and restart it.


Clicking on the Break button will cause program execution to pause at the next Linda 
operation. Execution will resume when you click on the Continue button, which may also 
be used to resume execution in single step mode.


To exit Tuplescope, click on the Quit button.
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Using Tuplescope with a Native Debugger


The following method is recommended for combining Tuplescope with a native 
debugger like dbx:


Compile the program for Tuplescope and the native debugger by including any 
necessary compiler options on the clc command (i.e. 
-g for dbx, -linda tuple_scope for Tuplescope).


Execute in single-step mode in Tuplescope until the desired process is created.


Click on the new process icon with the middle mouse button. This will create a 
new window running the native debugger attached to that process.


Set desired breakpoints in the native debugger. Then turn off single step mode in 
Tuplescope.


Give the continue execution command to the native debugger to resume 
execution of that process (e.g. use the cont command in dbx).


You may now use the native debugger to examine the process. The figure below 
illustrates a sample combination debugging session.


By default, the debugger started is dbx, except under HP/UX where it runs xdb in an 
hpterm window. A different debugger can be specified by setting the DEBUGGER 
environment variable to it. If the executable is not in the current path, give the entire 
pathname as its value; otherwise, its name alone is sufficient. Currently-supported 
debuggers are dbx, gdb, and xdb (under HP/UX).


It takes a little practice to understand all the nuances of Tuplescope-native debugger 
interactions. The trickiest part is usually figuring out where the next continuation 
command needs to be executed. If the Tuplescope Continue button does not resume 
execution, try issuing a next command to the native debugger process(es).
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To exit from a native debugging session without affecting Tuplescope, detach from it 
before quitting (in dbx, give the detach command, followed by quit). Quitting without 
detaching first will usually abort the process and cause the Linda program to fail.


It is recommended that you quit from all native debugger processes before exiting from 
Tuplescope. Pressing the Tuplescope Quit button while debugging windows are still 
open causes their processes to be terminated “out from under them.” Tuplescope will 
make no attempt to stop the debugger processes, so you will have to do it manually. 
Some debuggers have difficulty shutting down in this state, so you may have to use the 
UNIX kill command to stop those processes.


The Tuplescope Debugging Language


Clicking on Tuplescope’s Debug button brings up a menu that can be used to create, 
compile, and control debugging programs written in the Tuplescope Debugging 
Language (TDL). TDL is the means Tuplescope provides for users to specify that certain 
actions be taken on various program conditions. The various items on this menu have the 
following meanings:


Item Effect
Edit program.debug Edit the TDL program for this application.
Compile program.debug Compile the TDL program for this application.
Clear Debugging Actions Cancel all debugging actions in effect.
Exit Debug Menu Close the Debug menu.


The Edit and Compile items edit and compile the file program.debug where program is the 
name of the application running under Tuplescope. Edit will open an editor in a separate 
X window, using the contents of the EDITOR environment variable to determine which 
editor to run.


The Compile item causes the file to be translated into an internal form used by 
Tuplescope. Successful compilation results in the message Compilation done. 
Otherwise, an error message is printed. Once compiled, the statements in the debugging 
program go into effect until cancelled by the Clear Debugging Actions item.


TDL Language Syntax
TDL programs consist of one or more lines of the following form:


if (condition) then action


where condition is a test condition, and action is some action to be taken when the test is 
true (1). Note that the parentheses are part of the condition.


Conditions are formed from the following components:


[item operator test_value]


Note that the brackets are a required part of the syntax.


There are three distinct kinds of conditions:
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Tuple field comparison tests, where item is field N (where N is an integer), 
operator is one of the C operators ==, !=, > and <, and test_value is a constant. This 
sort of test selects tuples on the basis of one or more of their fields. For example:


[field 2 == 2]


This test chooses tuples whose second field contains the value 2.


Character strings used as constants must be enclosed in double quotation marks. 
Single characters must be enclosed in single quotation marks.


Note that tuples from distinct tuple classes can be selected by the same tuple field 
comparison. Fields containing aggregates may not be used in such conditions.


Tuple space operation tests, where item is linda_op, operation is either == or !=, 
and test_value is one of the following: eval, out, in, rd, block_in, and 
block_rd. This kind of test detects the occurrence of a particular kind of Linda 
operation. Here is an example: 


[linda_op == eval]


This condition detects the occurrence of an eval operation.


Process comparison tests, where item is process, operation is one of ==, !=, < 
and>, and test_value is an integer, representing a Tuplescope process number. This 
sort of test detects when any tuple space operation is performed by any process 
whose process number fulfills the condition. For example, this condition detects 
when any process with process number less than 5 accesses tuple space:


[process < 5]


Multiple conditions can be joined with and or or, as in this example:


[process < 5] and [linda_op == out]


The entire composite condition is enclosed in parentheses in the complete TDL 
statement, as we’ll see below.


Action can be one of the following: 


Action Effect
break Pause program execution; resume execution with the Continue button. If a 


tuple is associated with the tuple space operation that triggers a break, 
Tuplescope turns it solid black. The process which performed that tuple 
space operation is marked by a notch in its icon. (Ordinary display of all 
tuples and process icons is restored when you click the Continue button.)
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hide Suppress display of matching tuples or processes. This can be used to filter 
out unwanted tuples or processes.


color color Change matching items to the indicated color. Color must be on one of: 
red, orange, yellow, green, blue, indigo, and violet. On 
monochrome displays, the colors are mapped to distinct black and white 
pie-shaped icons.


save Dumps the contents of tuple space to a disk file. This is equivalent to
clicking on the Save button during program execution. Save operations
are not legal when the Dynamic Tuple Fetch option is in effect.


Here are some examples of complete TDL statements:


if ([linda_op == out]) then color red
if ([process < 5] or [process > 7]) then hide
if ([linda_op == out] and [field 2 != 0]) then break


The first statement turns the process icons for processes performing out operations the 
color red. The second statement hides all process icons except those for process numbers 
5 and 6. The final statement causes execution to pause whenever a tuple is placed in tuple 
space whose second field is nonzero. Note the syntax of the TDL statements, including 
both the parentheses and square brackets which must surround conditions.
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6
Linda Usage and Syntax Summary


Linda Operations


in(s) Withdraw a tuple matching s from tuple space. If no matching tuple is 
available, execution suspends until one is. If more than one matching 
tuple exists, one is chosen arbitrarily. When a match is found, the actuals 
in the matching tuples are assigned to the formals in the corresponding 
fields of s.


rd(s) Look for a tuple matching s in tuple space. If a matching tuple is found, 
actual-to-formal assignment occurs. If no matching tuple exists, the 
process blocks until one becomes available.


rdp(s) & inp(s) Predicate forms of rd and in respectively. They do not block if no 
matching tuple exists, but return 0/.FALSE. and exit. If a match is 
found, they return 1/.TRUE. and perform actual-to-formal assignment.


eval(s) Each field of s containing a simple function call results in the creation of 
a new process to evaluate that field. All other fields are evaluated 
synchronously prior to process creation. When all field values have 
become available, the tuple s is placed into tuple space.


out(s) Synchronously evaluates the fields of the tuple s and then places it into 
tuple space.


You can use the prefix __linda_ to construct an alternate name for any operation if the 
shorter name conflicts with other symbols. The prefix begins with two underscore 
characters.


Formal C-Linda Syntax
linda_call : call_type call_body


call_type: in | __linda_in |
inp | __linda_inp |
rd | __linda_rd |
rdp | __linda_rdp |
out | __linda_out |
eval | __linda_eval |


call_body: ( element {,element}* )
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element: formal | actual


formal: ? lvalue[:length] | type_name


actual: rvalue[:length]


length: expression


type_name:float | double | struct | union | 
[unsigned] ( int | long | short | char )


Timing Functions


The C-Linda function names are listed below.


start_timer() Initializes and starts the stopwatch in the current process. A separate call 
to start_timer is required in each process where timing is desired.


timer_split(string)
Takes a stopwatch reading when called and labels the time split with the 
specified string (length < 32 bytes). The maximum number of timer 
splits is 32.


print_times() Prints a table listing all time splits executed so far for this process. Each 
row includes the time split and its associated string.


Support Functions


The C-Linda function names are listed below. The Fortran-Linda versions have an f 
prepended to the C-Linda function name.


[f]lexit(status) Replacement for the C exit function. The lexit routine allows an eval 
process to abort the execution of the routine invoked through the eval 
operation but still continue as an eval server. The status value (int) 
passed to lexit is placed into the corresponding field of the live tuple 
(subject to typecasting restrictions).


[f]lhalt(status) Terminates execution of the entire Linda application (not just the local 
process), after calling any termination handlers specified by lonexit (see 
below). Provides the exit value returned by ntsnet.


[f]lintoff() Blocks the interrupts associated with tuple space handling. It is useful 
for protecting time-consuming system calls from being interrupted. 
Interrupts should not be disabled for long periods. linton and lintoff 
calls can be nested. For many implementations, this is a no op.


[f]linton() Restores the interrupts associated with tuple space handling (see lintoff 
below). For many implementations, this is a no op.
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[f]loffexit(hd) Deletes a specific handler from the list of handlers set up by lonexit, 
where hd is the handler descriptor returned by lonexit. Returns 0 on 
success and -1 on failure (descriptor out of range or not referring to an 
active termination handler).


[f]lonexit(*p,a) Names a routine to be called after a Linda process calls lexit, lhalt, or 
returns normally. The routine p is called as:


(*p)(status,a)


where status is the argument with which return, lexit or lhalt was called, 
and a is typically the address of an argument vector, although it also can 
be an integer value. Multiple calls can be made to lonexit, specifying up 
to 16 termination handlers, which are called in reverse chronological 
order (i.e., the last specified routine is called first). lonexit returns a 
unique, non-negative termination handler descriptor upon success or -1 
if the termination handler could no be stored.


[f]lprocs() Returns the total number of processes that have joined the computation 
(including the master process). In the Code Development System, this 
function is not meaningful, and it returns the value of the 
LINDA_PROCS environment variable, or the value 6 if it is not defined.


The clc and flc Commands


Command Syntax
clc [options] source files ...
flc [options] source files ...


clc expects source files to be of one of the following types: .c, .cl, .o, .lo. flc expects 
source files to be of one of the following types: .f, .fl, .o, .lo. By default, these 
commands produce the executable a.out (override this name with -o). The following 
figure illustrates the compilation and linking process.
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choc.cl


linda_cpp


choc.i


clc_parser


choc.i1


clc_le


choc.d0 _ltxxx.c


postcpp_cc


_ltxxx.o


choc.lo


choc.d0


_ _ laxxx.c clc_rl


laxxx.o


choc.o straw.d0 straw.o vanilla.o


linda_cc_link


straw.lo


vanilla.c


linda_cc


Linda Runtime


ltcp_linda.a
stubs.a


etc.


shell script
(calls cpp)


executable
(aka ''the Linda engine'')


shell script


executable


shell script
(calls cc & ld)


shell script


Compilation


Linking


executable


Command line: clc -o sundae choc.cl straw.lo vanilla.c


sundae


(aka ''the analyzer'')


C-Linda Compiling and Linking Process


_ _ lmxxx.a


linda.cp


Support


cmain.c


linda_cc


_ _ lmxxx.oltcp_es_support.o


ltcp_es_support.lo


ltcp_es_support.d0


linda_cc
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Command Options
Many of these options have the same meanings as they do with other UNIX compilers.


-c Suppress linking and only produces .lo object files for each Linda 
source file.


-Dname[=definition]
Define a C-preprocessor symbol (clc only).


-g Produce additional symbol table information for debuggers.


-help Display a help message.


-Ipathname Add the specified directory to the include list (clc only).


-linda option [arguments]
Linda-specific compiler directives. Values for option are:


compile_args s Pass the string s on to the native compiler when it is 
used to compile source files.


c_args s Pass the string s on to the C compiler (flc only).


info Print out the pathname of the Linda directory and 
the default size of tuple space.


link_args s Pass the string s on to the compiler when used to 
link the executable.


main file Use specified file in place of cmain.o or fmain.o.


ts N Initialize tuple space to N 200-byte blocks. This 
option is applicable in Code Development System 
code.


tuple_scope Prepare the object files and/or executable to be run 
with the Tuplescope debugger. This option can be 
abbreviated as t_scope.


-lx Link in the library libx.a.


-Ldirectory Add directory to the object file/library search list used by the linker.


-o outputfile Name the executable file as indicated.


-v Display subcommands for each step of the compilation.
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-w Suppress warning messages.


-w72 Suppress warning messages about text beyond column 72 (text is still 
ignored; flc only).


The ntsnet Command


Syntax
ntsnet [options] executable [arguments]


Parameters
options One or more command line options (listed below). Command line 


options override configuration file settings.


executable Executable file to execute.


arguments Arguments to the executable program.


Options Syntax Convention
When setting boolean resources on the command line, ntsnet uses the convention that an 
option name preceded by a minus sign sets the corresponding resource to true, and one 
preceded by a plus sign sets the corresponding resource to false.


Command Options
-appl name This option causes ntsnet to use name as the application name for the 


purposes of querying the configuration file database. Normally, ntsnet 
uses the executable name, as typed on the ntsnet command line, as the 
application name in the configuration file database. This can be useful if 
several different executables use the same configuration parameters. 
Note that -appl has no corresponding resource parameter in the 
configuration file.


-bcast This option enables the tuple broadcast optimization.


+bcast This option disables the tuple broadcast optimization. This is the 
default.


-bcastcache s This option specifies the size of the broadcast cache in bytes. This size is 
a trade-off between memory consumption and hit rate. The default size 
is 1 MB. This resource is only used when bcast is true.


-cleanup This option indicates that remote executables should be removed when 
execution completes. This is the default. Note that the local executable 
is protected from removal.


+cleanup This option indicates that remote executables should not be removed 
when execution completes.
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-d/+d Synonymous with -distribute/+distribute.


-debug Run application in debug mode (see Debugging TCP Linda Programs 
on page 69 for more information). This option also changes or 
overrides the values of several ntsnet resources; see the discussion of the 
debug resource later in this chapter for details.


-distribute This option causes executables to be copied to remote nodes prior to 
execution. Executables shall only be copied to nodes which are actually 
going to take part in the execution. After execution completes, ntsnet 
automatically removes the remote executables that it just distributed. 
The local executable is protected from removal. See the cleanup 
command line option or resource for information on preventing the 
automatic removal of remote executables.


+distribute This option indicates that executables are not copied. This is the default.


-fallbackload load 
This option specifies the load average the scheduler shall use for a node 
if the RPC call to get system load average fails. The default is 0.99. The 
value specified can be any real number >= 0. If failure of the RPC call 
indicates that the node is down, this option can be used to set 
fallbackload to a very large value, effectively making the node 
unavailable to ntsnet.


-getload This option indicates that ntsnet should use load average information 
when scheduling workers on the nodes in the network. This is the 
default. 


+getload This option indicates that ntsnet should not use load average 
information. This can be used to make worker scheduling consistent 
between different runs of ntsnet. It also makes sense if the rstatd 
daemon is not available on the network.


-h/+h Synonymous with -high/+high.


-help This option causes ntsnet to display the usage message.


-high This option causes all workers to be run at normal priority and causes 
Linda internodal communication to run at full speed. This is the default.


+high This option causes all workers to run at a nice-ed priority (unless 
specifically overridden on a per node per application basis using the nice 
resource). It also causes Linda internodal communication to be throttled 
to avoid flooding the network. 


-kainterval seconds
Specifies how often, in seconds, each Linda process sends out a keep 
alive message. The default is 100 seconds. The range of legal values is 
100 to 31536000 (one year). The range is silently enforced. This 
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resource is only useful when the keep alive mechanism is used (i.e., when 
kaon is true).


-kaon This option turns on the keep alive mechanism. This is the default.


+kaon This option turns off the keep alive mechanism.


-loadperiod minutes
This option specifies the number of minutes over which the machine 
load is averaged. Typical values for loadperiod are 1, 5, and 10. The 
default is 5.


-masterload load
This option specifies the load that the master (real_main) process is 
considered to put on the node. The value specified can be any real 
number >= 0. The default is 1. Typically 1 or some smaller fraction is 
used. If the master process uses much less CPU time than the workers, 
the master load should be set smaller than the worker load. 


-maxprocspernode number
This option specifies the maximum number of Linda processes started 
on any given node the application is running on. On the local node, 
maxprocspernode includes the master. The default value is 1.


-mp number Synonym for -maxprocspernode.


-n minworkers[:maxworkers]
This option specifies the acceptable range of the number of workers 
that the application can run with. If maxworkers is omitted, it is set to the 
same value as minworkers. ntsnet initially starts up the number of 
workers equal to the maximum of the minworkers and maxworkers 
resource values. The master then waits as specified in the minwait and 
maxwait resources, for the workers to join the execution group. If at 
least minworkers join before the maxwait interval has elapsed, execution 
shall proceed, otherwise execution shall terminate.


-nodefile filename
This option specifies the name of the file containing a list of nodes on 
which this application can run. The default is tsnet.nodes. This 
resource is for backward compatibility with the old tsnet utility. This file 
is only used if the nodelist resource is set to @nodefile, which is the 
default value. See the description of the nodelist resource for more 
details.


-nodelist "node-specifiers..."
This option specifies a space-separated list of nodes on which an 
application may run. This list must be inclosed in quotes if more than 
one node-specifier is used. A node-specifier can be any one or a 
combination of the types described below:


The keyword @nodefile
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A node name
A user defined resource


See the description of the nodelist resource for more details.


Note: If the -nodelist option is not used and you have not specifically 
set the nodelist resource in the ntsnet configuration file(s), the 
application will run on the nodes contained in the tsnet.nodes file in 
your current working directory.


-opt "resource: value"
This option specifies a value to override any resource in the 
configuration file. It provides a mechanism for overriding resources for 
which no specific command line option is provided.


-p path This option specifies both the directory on a remote node where the 
Linda executable resides or will be distributed to, and the directory that 
shall be cded to prior to executing the remote Linda process. Thus the 
-p option simultaneously overrides both the rexecdir and rworkdir 
resources.


Since -p specifies a local directory, the value of -p is subject to map 
translation. The translation occurs before the -p value overrides the 
rexecdir and rworkdir resources. This option is intended to provided a 
mechanism very similar to the -p option on the previous tsnet utility.


-redirect This option turns on the tuple redirection optimization. This is the 
default.


+redirect This option turns off the tuple redirection optimization.


-suffix This option causes a node specific suffix, indicated by the suffixstring 
resource, to be appended to the executable name. This is the default. 
Note that the default value of suffixstring is an empty string.


+suffix This option indicates that TCP Linda is not to use node-specific 
suffixes.


-translate This option indicates that map translation shall be performed. This is 
the default. Note that it is not an error to have translation on and to 
have no map file. In that case, no translations will be performed.


+translate This option indicates that map translation shall not be performed.


-useglobalconfig
This option causes ntsnet to use the resource definitions in the global 
configuration file. The resource definitions in the global configuration 
file are used in addition to the command line options and the user’s local 
configuration if one exists. This is the default.
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+useglobalconfig
This option causes ntsnet not to use the resource definitions in the 
global configuration file. ntsnet will only use the command line options 
and the user’s local configuration file if one exists. This is useful if a user 
does not wish to use the configuration file installed by the system 
administrator.


-useglobalmap
This option causes ntsnet to use the global map translation file. The 
translations in the global map translation file are used in addition to the 
user’s local map translation file if one exists. This is the default.


+useglobalmap
This option causes ntsnet not to use the global map translation file. 
ntsnet will only use the user’s local map translation file if one exists. This 
is useful if a user does not wish to use the map file installed by the 
system administrator.


-v/+v Synonymous with -verbose/+verbose.


-vv/+vv Synonymous with -veryverbose/+veryverbose.


-verbose This mode displays remote commands being issued and other 
information useful for debugging configuration and map files.


+verbose This option turns off verbose mode. This is the default.


-veryverbose Turns on very verbose mode, which produces the maximum amount of 
informational status messages.


+veryverbose This option turns off very verbose mode. It is the default.


-wait minwait[:maxwait]
This option specifies the minimum and maximum times to wait for 
nodes to join the execution group. If maxwait is omitted, it is set to the 
same value as minwait. Both default to 30 seconds. Execution will 
commence once the execution group is set, based on the values of the 
minwait, maxwait, minworkers, and maxworkers resources (see the 
discussion of these resources in the next section for details).


-workerload load
This option specifies the load that a worker will put on a node. The 
value specified can be any real number >= 0. The default is 1. Typically 
1 or some smaller fraction is used. A larger value could be used to 
increase the chances of having one Linda process running on each node.


-workerwait seconds
This option specifies the time, in seconds, that a worker waits for a 
response to its join message, from the master. The default is 90. If a 
worker does not get a response within the specified time, telling the 
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worker that it’s joined, the worker will exit, and therefore not participate 
in the application execution. 


ntsnet Configuration File Format


This section serves as a reference for the format of both the user (local) ntsnet 
configuration file (~/.tsnet.config) and the global ntsnet configuration file (lib/
tsnet.config relative to the Linda tree).


When setting Boolean resources in the configuration files, values can be specified as true 
or false, yes or no, on or off, or as 1 or 0.


Resource Definition Syntax
program[.appl][.node].resource: value


where the various components have the following meanings:


Program is either the class name Tsnet, or a specific instance of this class (i.e., 
ntsnet). In the future, there may be alternate versions of Tsnet-type programs, such as 
xtsnet, but currently there is only ntsnet.


Appl is either the class name Appl, or a specific application name, such as ping. The 
application instance names cannot contain a period; you must convert periods to 
underscores.


Node is the class Node, or a specific node name, such as mysys. The node instance 
names can be either the node’s official name or a nickname. The node instance names are 
node names found in either the /etc/hosts file, the NIS hosts database, or the 
Internet domain name database. An example of an official name is, 
fugi.mycompany.com. A typical nickname for this node is fugi. If a node name 
contains a period, you must convert the period to an underscore. The other option would 
be to use a nickname not containing the “.” character.


Resource is a variable name recognized by ntsnet that can be assigned values.


Value is the value assigned to the resource.


If both the appl and node components are required for a given resource definition, the 
appl component must precede node. If an incorrect format is used, the resource 
definition will be ignored by ntsnet.


Resources
Note: All resources are application-specific unless otherwise specified. Also, if the 
corresponding option is used on the ntsnet command line, it takes precedence over the 
resource value in the configuration files.


available Specifies whether a node is available for use as a worker. This resource is 
node-specific. The default is true.







ntsnet Configuration File Format


Linda User Guide 117


bcast Specifies whether or not the tuple broadcast optimization is enabled. 
The default is false.


bcastcache Specifies the size of the broadcast cache. This size is a trade-off between 
memory consumption and hit rate. The default size is 1Mb. This 
resource is only used when bcast is true.


cleanup Specifies whether or not remote executables shall be removed from 
remote nodes after execution completes. Executables are removed only 
if they were distributed by ntsnet in the current execution. The local 
executable is protected from removal. The default is true.


debug Specifies whether or not to run in debug mode (see Debugging TCP 
Linda Programs on page 69 for more information). The default is 
false. If true, it also changes the default value for kaon to false, 
workerwait to 1000000, and maxwait to 1000000, and overrides the 
value of nice to be false.


debugger Specifies the debugger to use when running in debug mode. The default 
is dbx.


delay Specifies the delay period in seconds between invocations of rsh when 
ntsnet initiates execution on remote nodes. The default value is 0.


distribute Specifies whether or not the executable(s) shall be distributed to the 
remote nodes. Executables are distributed only to those remote nodes 
that are actually going to take part in the execution. After the execution 
completes, ntsnet automatically removes the remote executables that it 
just distributed. The local executable is protected from removal. The 
default is false. See the cleanup resource for information on preventing 
the automatic removal of remote executables.


fallbackload Specifies the load average the scheduler shall use for a node if the RPC 
call to get system load average fails. The default is 0.99. The value 
specified can be any real number >= 0. If failure of the RPC call 
indicates that the node is down, this option can be used to set 
fallbackload to a very large value, effectively making the node 
unavailable to ntsnet.


getload Specifies whether or not to use load averages when scheduling workers 
on the nodes in the network. The default is true. This can be used to 
make worker scheduling consistent between different runs of ntsnet. It 
also makes sense if the rstatd daemon is not available on the network.


high Specifies whether all workers shall run at normal priority and Linda 
internodal communication should run at full speed. The default is true. 
If the high resource is false, the workers run nice’d, unless specifically 
overridden on a per node per application basis using the nice resource 
(note that high being true overrides the setting for nice). Also when the 
high resource is false, Linda internodal communication is throttled so 
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that it does not flood the network and thereby degrade the performance 
of the network Linda application and other network users. For small 
networks, 2-4 nodes, specifying high as true will probably not make a 
difference. On large networks, specifying high as true, and thus asking 
the Linda kernel not to throttle internodal communication, may cause 
the network to flood.


kainterval Specifies how often, in seconds, each Linda process sends out a keep 
alive message. The default is 100 seconds. The range of legal values is 
100 to 31536000 (one year). The range is silently enforced. This 
resource is only useful when the keep alive mechanism is used, that is, 
when kaon is true.


kaon Specifies whether of not the keep alive mechanism is used. The default 
is true unless debug is true, in which case it is false.


lindarcparg Specifies a string to be passed to the linda_rcp shell script called by 
ntsnet to distribute executables to remote nodes. This resource provides 
a hook enabling the user to change the behavior of the shell script 
(which can itself be modified by the user). The default implementation 
of linda_rcp (located in the Linda bin subdirectory) takes no arguments 
and so ignores the value of this resource. This is a node-specific 
resource.


lindarsharg Specifies a string to be passed to the linda_rsh shell script, called by 
ntsnet to start up a worker process on a remote node. This resource 
provides a hook enabling users to control the behavior of the shell script 
(which can itself be modified by the user). In the default implementation 
of linda_rsh (located in the Linda bin subdirectory), only the string 
"on" is meaningful as a value to this resource. If "on" is passed to 
linda_rsh, then the on command will be used instead of rsh to initiate 
the remote process. This is a node-specific resource.


loadperiod Specifies the number of minutes over which the machine load is 
averaged. This is the load average then used by the worker. Typical 
values for loadperiod are 1, 5, and 10. The default is 5.


masterload Specifies the load that the master (real_main) process is considered to 
put on the node. The value specified can be any real number >= 0. The 
default is 1. Typically 1 or some smaller fraction is used. If the master 
process uses much less CPU time than the workers, then masterload 
should be set smaller than workerload. 


maxnodes Specifies the maximum number of nodes on which to execute. The 
default value is the number of nodes in the node list.


maxprocspernode
Specifies the maximum number of Linda processes started on any given 
node the application is running on. On the local node, 
maxprocspernode includes the master. The default value is 1.
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maxwait The maximum amount of time to wait for a valid execution group to be 
formed. Note that maxwait specifies the total time to wait, including the 
time specified in minwait; it does not represent an amount of time to 
wait over and above the minwait interval. The default is 30 seconds, 
which is the same as the default for minwait, unless debug is true, when 
the default value is 1000000 seconds. See the discussion of minwait 
below for more details about this resource.


maxworkers Specifies the maximum number of workers started for a given 
application. The default is the number of distinct nodes in nodelist 
minus one for the local node running the master. ntsnet initially starts 
up the number of workers equal to the maximum of the minworkers and 
maxworkers resource values. The master then waits the time period 
specified in the minwait and maxwait resources for the workers to join 
the execution group. If at least minworkers join within that time, 
execution shall proceed, otherwise execution shall terminate. See the 
discussion of minwait below for full details.


minwait Specifies the minimum amount of time to wait to allow an execution 
group to form in seconds; the default is 30. Execution will proceed 
according to the following criteria. First, if at any point before the 
minwait interval has elapsed, maxworkers workers have joined the 
execution group, execution will commence at once. When the minwait 
interval expires, if at least minworkers workers have joined the execution 
group, then execution will begin. Otherwise, execution will begin as 
soon as minworkers workers do join or the maxwait interval has expired 
(the latter includes the time in minwait). If there are still not maxworkers 
workers when the maxwait interval ends, execution will terminate.


minworkers Specifies the minimum number of workers started for a given 
application. The default is 1. Thus, the default minimum shall be a 
master process and one worker (see maxworkers).


nice Specifies whether or not workers on a specific node run nice’d. This 
resource is node and application specific. The default is true. When the 
high resource is set to true, this resource is ignored. When debug is true, 
its value is overridden to be false.


nodefile Specifies the pathname of the file containing a list of nodes on which 
this application can run. The default is tsnet.nodes. If nodefile and 
nodelist are both undefined, ntsnet shall look for the list of nodes on 
which to run in the tsnet.nodes file in the current working directory. 
This is the default behavior and is backwards compatible with the old 
tsnet utility. The nodefile resource is only used if the nodelist resource is 
set to @nodefile, which is the default value. See the description of the 
nodelist resource for more details.


nodelist Specifies a space separated list of nodes on which an application may 
run. The nodelist value can be set to any one or a combination of these 
items: the key word @nodefile, a node name, and user defined 
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resources. The default is @nodefile, plus the local node name. The 
key word @nodefile refers to the nodefile resource value, which is a 
file containing a list of node names. User defined resources provides a 
way to specify a list of node names symbolically. The user defined 
resource must be preceded with the indirection symbol. The maximum 
number of indirections is 16.


redirect Specifies whether or not tuple redirection optimization is used. The 
default is true.


rexecdir Specifies the directory on a remote node where the TCP Linda 
executable resides. Or if distributing, it also specifies the directory on 
the remote node where the Linda executable shall be distributed to prior 
to execution. This resource is node and application specific. The default 
is the key word Parallel. The Parallel keyword indicates that 
ntsnet should use the map file to translate the name of the local 
executable directory for that remote node.


rworkdir Specifies the remote node's working directory. This resource is node and 
application specific. The default is the key word Parallel. The 
Parallel keyword indicates that ntsnet should use the map file to 
translate the name of the local working directory for that remote node.


speedfactor Specifies the relative aggregate CPU capability of a particular node. The 
larger the relative speedfactor, the more capable that particular node is 
of running multiple workers. This resource is node specific. The default 
is 1. 


suffix Specifies whether or not to append a node specific suffix, indicated by 
the suffixstring resource, to the executable name. The default is true.


suffixstring Specifies a suffix to be appended to a particular executable name when 
run on a particular node (the default is the null string, meaning no 
suffix). This resource is node and application specific.


threshold Specifies the maximum load allowed on a specific node. The ntsnet 
scheduler is prevented from starting another worker on this specific 
node when this threshold is reached. This resource is node specific. The 
default is 20.


translate Specifies whether map file translation is used. The default is true.


useglobalconfig
Specifies whether the global configuration file is used. The default is 
true.


useglobalmap Specifies whether the global map translation file is used. The default is 
true.
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user Specifies a username to use on remote nodes, instead of your local 
username. If this resource is unspecified, the remote username is the 
same as your local username. This resource is node specific.


verbose Specifies whether or not ntsnet works verbosely. The default is false. If 
the verbose resource is true, ntsnet displays remote commands being 
issued, and information about each node specified in the nodelist 
resource.


veryverbose Specifies whether the maximal amount of status messages should be 
displayed. The default is false. The veryverbose and verbose resources 
are independent.


workerload Specifies the load that a worker will put on a node. The value specified 
can be any real number >= 0. The default is 1. Typically 1 or some 
smaller fraction is used. A larger value could be used to increase the 
chances of having one Linda process running on each node.


workerwait Specifies the time, in seconds, that a worker waits for a response to its 
join message, from the master. The default is 90, unless debug is true, in 
which case it is 1000000. If a worker does not get a response within the 
specified time, telling the worker that it has joined, the worker will exit, 
and therefore not participate in the execution of the application.


Map Translation File Format


This section documents the format of the map translation files used by TCP Linda. These 
files are .tsnet.map in the user’s home directory—the local map file—and lib/
tsnet.map (the global map file, located relative to the Linda tree).


Map file entries have one of the following formats:


map generic-directory {
node1 : specific-directory;
[node2 : specific-directory ;]
…
}


mapto generic-directory {
node1 : specific-directory ;
[node2 : specific-directory ;]
…
}


mapfrom generic-directory {
node1 : specific-directory ;
[node2 : specific-directory ;]
…
}
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Note that generic-directory need not be a real directory location at all, but can be any 
string. In this case, the entry has the effect of setting up equivalences among the listed set 
of remote directories.


Wildcards are allowed in map translation file entries:


The asterisk character (*) can be used for any node name or as the first 
component of a node name (e.g. *.com). 


The ampersand character (&) substitutes the current node name—at the time and 
in the context in which the translation is taking place—within a directory 
pathname. It can be used in either generic or specific directory specifications.


See the discussion in Chapter 4 for full details on map translation file entries.


Environment Variables


The following environment variables are used within the Linda system:


DEBUGGER Specifies the debugger to use when combining a native debugger
with Tuplescope. The default is dbx (xdb under HP/UX).


LINDA_CC Used by the linda_cc shell script; specifies the C compiler to use
for compiling .c files (defaults to cc).


LINDA_CC_LINK Used by the linda_cc_link shell script; specifies the command
to use for linking the executable (defaults to cc).


LINDA_CLC Used by the C-Linda compiler; specifies which type of executable to
build: linda_tcp or cds (Code Development System).


LINDA_FLC Used by the Fortran-Linda compiler; specifies which type of
executable to build: linda_tcp or cds (Code Development
System).


LINDA_FORTRAN Used by the linda_fortran shell script; specifies the Fortran
compiler to use for compiling .f files (defaults to f77 in most cases,
and to xlf under AIX).


LINDA_FORTRAN_LINK


Used by the linda_fortran_link shell script; specifies the
command to use for linking the executable (same defaults as for
LINDA_FORTRAN).


LINDA_PATH Specifies the path to the Linda installation directory. The directory
specification must contain a terminal slash.
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LINDA_PROCS Used by the Linda Code Development System as the return value
for the lprocs and flprocs support functions (under CDS, lprocs is
not truly meaningful and is provided only for compatibility with
TCP Linda).


POSTCPP_CC Used by the postcpp_cc shell script; specifies the C compiler to
use for compiling .cl files (defaults to cc).


POSTFL_FORTRAN Used by the postfl_fortran shell script; specifies the Fortran
compiler to use for compiling .f files generated by Fortran-Linda
from .fl source files (same defaults as for LINDA_FORTRAN).


TSNET_PATH Used by ntsnet; specifies its search path for local executables. Its
value is a colon-separated list of directories.


Tuplescope Reference


Menu Buttons
Modes Set debugging modes on or off.


Aggregates Specify format for aggregates displays (active when Display Aggregates 
is on). Available formats are: Long, Short, Float, Double, Character, and 
Hexadecimal.


Run Begin program execution.


Break Pause program execution.


Continue Resume execution of a paused program.


Debug Create, edit and/or compile a TDL program.


Save Save the current contents of tuple space to a file (not available when 
Dynamic Tuple Fetch mode is in effect). The file is named 
program.N.dump, where program is the application name and N is a 
integer incremented each successive save operation.


Quit End Tuplescope session.


The Modes Menu
Single Step Controls whether single step mode is in effect or not (default is off).


Display Aggregates
Controls whether the contents of aggregates are displayed in tuple 
displays (off by default). If Display Aggregates is not in effect, 
aggregates in tuple displays appear as the word Block. The format for 
an aggregate display is the one that was in effect when its tuple icon was 
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opened if Dynamic Tuple Fetch is in effect or when it entered tuple 
space if Dynamic Tuple Fetch is not in effect.


Dynamic Tuple Fetch
When in effect, tuple contents are copied to Tuplescope only when 
requested. This mode may speed up execution somewhat, but it has the 
side effect that not all tuples are always continuously available for 
inspection as they are under the normal mode.


Reverse Execution
Available in postmortem mode only. Causes execution to run in reverse 
when in effect.


Exit Modes Menu
Close the Modes menu.


The Debug Menu
Edit program.debug


Edit a TDL program named for the current application. The editor 
specified by the EDITOR environment variable is opened in a new 
window.


Compile program.debug
Translate the TDL program to Tuplescope’s internal form and put its 
statements into effect.


Clear Debugging Actions
Cancel all debugging directives in effect via the current TDL program.


Exit Debug Menu
Close the Debug menu.


TDL Language Syntax


TDL statements have the following form:


if (condition) then action


Conditions have one of the following formats (select one item from each column). This 
format tests the value in a tuple field and performs the action for matching tuples:


[ field N == constant_value]
!=
>
<


This format tests for the specified Linda operation and performs the action for matching 
processes:
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[ linda_op == eval ]
!= out


in
rd
block_in
block_rd


This format tests for the specified process number and performs the action for matching 
processes:


[ process == N ]
!=
>
<


Note that the brackets are part of the condition syntax and must be included. Multiple 
conditions can be joined with and and or. The entire condition is enclosed in 
parentheses when it is placed into the TDL statement.


Actions must be one of the following:


break Pause program execution.


hide Hide the triggering processes/tuples.


color c Change the triggering process/tuple to the color c, one of: red, 
orange, yellow, green, blue, indigo, and violet.


save Save the current contents of tuple space to a file, named 
program.N.dump, where program is the application name and N is a 
integer incremented each successive save operation.







126 Linda Usage and Syntax Summary







Linda User Guide 127


7
Sample Programs


This chapter contains five sets of example programs that demonstrate how to use Linda 
to parallelize serial programs. Each example includes the serial version of a program 
written in C and a parallel version created with C-Linda. The examples are presented in 
order of increasing complexity.


Array Assignment


Serial Version
/*****************************************************************************
* Serial Example - Array Assignment - C Version
* FILE:array.c
* OTHER FILES: make.array.c
* DESCRIPTION: 
*   In this simple example, an array is initialized and values assigned.
*   In the parallel version the master task initiates numtasks-1 number of
*   worker tasks.  It then distributes an equal portion of an array to each 
*   worker task.  Each worker task receives its portion of the array, and 
*   performs a simple value assignment to each of its elements. The value 
*   assigned to each element is simply that element's index in the array+1.  
*   Each worker task then sends its portion of the array back to the master 
*   task.  As the master receives back each portion of the array, selected 
*   elements are displayed. 
****************************************************************************/


#include <stdio.h>


#defineARRAYSIZE600000


main() {
   int     i; /* loop variable */
   floatdata[ARRAYSIZE]; /* the intial array */


/************************* initializations *********************************/


   printf("\n*********** Starting Serial Example ************\n");
   fflush(stdout);


   /* Initialize the array */
   for(i=0; i<ARRAYSIZE; i++) 
      data[i] =  0.0;
   /* Do a simple value assignment to each of the array elements */
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   for(i=1; i < ARRAYSIZE; i++)
      data[i] = i + 1;


   printf("Sample results\n");
   printf("   data[1]=%f\n",  data[1]);
   printf("   data[100]=%f\n",  data[100]);
   printf("   data[1000]=%f\n\n",  data[1000]);
   fflush(stdout);


   printf("All Done! \n");
}


##############################################################################
# Serial - Array Makefile 
# FILE: make.ser_array.c
# DESCRIPTION:  See ser_array.c
# USE: make -f make.ser_array.c 
##############################################################################


CC        =       cc


array: ser_array.c
${CC} ser_array.c -o array 


Parallel Version
/***************************************************************************** 
* LINDA Example - Array Assignment - C Version 
* FILE: clinda_array.cl
* OTHER FILES: make.clinda_array.cl 
* DESCRIPTION: 
*   In this simple example, the master task initiates a number of tasks 
*   indicated by user input. It then distributes portion of the 
*   array into tuple space to be worked on by the workers.   
*
*   Each worker task retrieves data indicating what portion of the array
*   the worker should update, and performs a simple value assignment 
*   to each of its elements. The value assigned to each element is 
*   simply that element"s index in the array+1.  Each worker task
*   then puts its array back into tuple space and will
*   continue retrieving  work assignments until it is notified to stop
*
*   As the master receives back each portion of the array, selected
*   elements are displayed. When it has received all portions of the array,
*   It will put out a "poison pill" to notify the workers to stop work.
*****************************************************************************/


#include <stdio.h> 
#define ARRAYSIZE 1000
#define MAXWORKERS 20


real_main(int argc, char *argv[]) {
   /*  Local Variables */
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   int   numworkers, index, i;
   int   data[ARRAYSIZE], result[ARRAYSIZE];
   int   extrachunk, id; 
   int   data_index;
   int   chunksize, nbr_chunks;
   int   worker();


   /************************* initializations ********************************
   * Get the number of tasks from the user.  Then
   * define the number of worker tasks and the array partition size as chunksize.
   ***************************************************************************
   */
   numworkers=0;


   while ((numworkers > MAXWORKERS) || (numworkers < 1)) {
      printf ("Enter number of workers between 1 and %d\n", MAXWORKERS);
      scanf ("%d", &numworkers);
   }


   chunksize = 100;


   /**************************** master task ****************************/
   printf ("************ Starting LINDA ARRAY Example ************\n");


   /* Initialize the array */


   i=0;
   while (i < ARRAYSIZE) { 
      data[i] =  0;
      i++;
   }


   /* put it out there */


   out ("init_array", data);


   /* Start the worker tasks  */


   i=1;
   while (i <= numworkers) {
      printf ("Starting worker task %d\n", i); 
      eval("worker", worker(i));
      i++;
   }
      
   nbr_chunks = ARRAYSIZE/chunksize;
   i = 1;
   index = 0;
   while (i <= nbr_chunks) {
      out ("my_section", index, chunksize);
      index = index + chunksize;
      i++;
   }/* end while */
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   /* print a few sample values  */
    
   i=1;
   while (i <= nbr_chunks) {
      in ("result_data", ?id,  ?index, ?result);


      /* put it into the data array */
      data_index = index;
      while (data_index < index+chunksize) {
         data[data_index]=result[data_index];
         data_index++;
      }
      printf ("---------------------------------------------------\n");
      printf ("MASTER: Sample results from worker task %d\n", id); 
      printf ("    data( %d ) = %d )\n", index, data[index]);
      printf ("    data( %d ) = %d\n", index+10, data[index+10]);
      printf ("    data( %d ) = %d\n", index+20, data[index+20]);
      printf (" ");
      i++;
   }
 
   /* now kill off the workers  by telling them there is no more work
   to do, i.e., chunksize = 0 */
   i=1;
   while (i <= numworkers) {
      out("my_section", 0,0);
      i++;
   }


   printf (" MASTER: All Done!\n" ); 
}


/************************* worker task ************************************/


int worker(int id) {
   /* local variables */   
   int index;
   int data[ARRAYSIZE];
   int chunksize, i;
   int next_index;
        


   /* Get the initialized array from tuple space  */    


   rd ("init_array", ? data);


   /* loop until no more work */


   while (1) {


   /* Index into my portion of the array that was passed in.  Get the chunksize.*/


      in ("my_section",  ?index, ? chunksize);
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      /* check to see if there is more work */
      if (chunksize == 0 ) {
         /* there is no more work so let other tasks know */
         return(0);
      }


      /* Do a simple value assignment to each of my array elements */


      i=index;
      while (i < index+chunksize) {
         data[i] = i + 1;
         i++;
      } 


     /* Send my results back to the master */
 
     out ("result_data", id, index, data);


   } /* end of loop */


   return (0);
}


##############################################################################
# Linda Simple Array Program Makefile
# FILE: make.clinda_array.cl
# DESCRIPTION: see clinda_array.cl  
# USE: make -f make.clinda_array.cl 
# Note: To compile using tuple scope use -linda tuple_scope compiler option
#       (CFLAGS = -linda tuple_scope)
##############################################################################
CC        =       clc
CFLAGS    = 
array:  clinda_array.cl


${CC} ${CFLAGS} clinda_array.cl -o  array
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pi Calculation


Serial Version
/* ---------------------------------------------------------------------
 *  Serial pi Calculation - C Version
 *  FILE: ser_pi_calc.c
 *  OTHER FILES: make.pi_calc.c
 *  DESCRIPTION:  pi calculation example program.  C Version.
 *    This program calculates pi using a "dartboard" algorithm.  See
 *    Fox et al.(1988) Solving Problems on Concurrent Processors, vol.1
 *    page 207.  All processes contribute to the calculation, with the
 *    master averaging the values for pi.
* --------------------------------------------------------------------*/


#include <stdlib.h>
#include <stdio.h>


// void srandom (int seed);
double dboard (int darts);


#define DARTS 5000   /* number of throws at dartboard */
#define ROUNDS 10    /* number of times "darts" is iterated */


main() {
   double pi;           /* average of pi after "darts" is thrown */
   double avepi;        /* average pi value for all iterations */
   int i, n;


   srandom (5);
   avepi = 0;
   for (i = 0; i < ROUNDS; i++) {
       /* Perform pi calculation on serial processor */
       pi = dboard(DARTS);


       avepi = ((avepi * i) + pi)/(i + 1); 
       printf("   After %3d throws, average value of pi = %10.8f\n",
                 (DARTS * (i + 1)),avepi);
   }    
}
/*****************************************************************************
 * dboard
*****************************************************************************/
#define sqr(x)((x)*(x))
//long random(void);


double dboard(int darts) {
   double x_coord,       /* x coordinate, between -1 and 1  */
          y_coord,       /* y coordinate, between -1 and 1  */
          pi,            /* pi  */
          r;             /* random number between 0 and 1  */
   int score,            /* number of darts that hit circle */
       n;
   unsigned long cconst; /* used to convert integer random number */
                           /* between 0 and 2^31 to double random number */
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                           /* between 0 and 1  */


   cconst = 2 << (31 - 1);
   score = 0;


/***********************************************************************
 *     Throw darts at board.  Done by generating random numbers
 *     between 0 and 1 and converting them to values for x and y
 *     coordinates and then testing to see if they "land" in
 *     the circle."  If so, score is incremented.  After throwing the
 *     specified number of darts, pi is calculated.  The computed value
 *     of pi is returned as the value of this function, dboard.
 *     Note:  the seed value for rand() is set in pi_calc.
 ************************************************************************/


   for (n = 1; n <= darts; n++) {
       /* generate random numbers for x and y coordinates */
       r = (double)random()/cconst;
       x_coord = (2.0 * r) - 1.0;
       r = (double)random()/cconst;
       y_coord = (2.0 * r) - 1.0;


       /* if dart lands in circle, increment score */
       if ((sqr(x_coord) + sqr(y_coord)) <= 1.0)
          score++;
   }


   /* calculate pi */
   pi = 4.0 * (double)score/(double)darts;
   return(pi);
} 


##############################################################################
# Serial - pi_calc Makefile 
# FILE: make.ser_pi_calc.c
# DESCRIPTION:  See ser_pi_calc.c
# USE: make -f make.ser_pi_calc.c 
##############################################################################


CC        =       cc


pi_calc: ser_pi_calc.c
${CC} ser_pi_calc.c -o pi_calc 







134 Sample Programs


Parallel Version
/* ----------------------------------------------------------------------
 *             LINDA pi Calculation Example - C Version 
 *
 * FILE: clinda_pi_calc.cl 
 * OTHER FILES: dboard.c, make.clinda_pi_calc.c
 * DESCRIPTION:  Linda pi calculation example program.  C Version.
 *   This program calculates pi using a "dartboard" algorithm.  See
 *   Fox et al.(1988) Solving Problems on Concurrent Processors, vol.1
 *   page 207.  All processes contribute to the calculation, with the
 *   master averaging the values for pi.
* --------------------------------------------------------------------*/


#include <stdlib.h>
#include <stdio.h>


//void srandom (int seed);
double dboard (int darts);
#define MAXWORKERS 20
#define DARTS 5000   /* number of throws at dartboard */
#define ROUNDS 10    /* number of times "darts" is iterated */


real_main() {
   /* local variables */
   double homepi,      /* value of pi calculated by current task */
          pi,          /* average of pi after "darts" is thrown */
          avepi,       /* average pi value for all iterations */
          pi_recv,     /* pi received from worker */
          pisum;       /* sum of workers pi values */
   int nworkers,        /* number of workers */
   round_nbr,
   wrker, i;
   int worker();


   /* get number of workers */


   nworkers = 0;
   while ((nworkers < 1) || (nworkers > 20)) {
      printf ("Enter number of workers between 1 and 20\n");
      scanf("%d", &nworkers);
   }


   /* start up the workers */


   for (i=1; i <= nworkers; i++) {
       eval ("workers", worker(i));
       printf ("starting worker %d\n", i);
   }


   /* Start collecting the results for each round */
   avepi = 0;
   srandom(0);
   for (round_nbr = 0; round_nbr < ROUNDS; round_nbr++) {
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       pisum = 0;
       /* master does pi calc too */
       homepi = dboard(DARTS);


      /* get results from each worker */
       for (wrker = 0; wrker < nworkers; wrker++) {
           in ("pi_results", round_nbr, ?pi_recv);
           /* keep running total of pi */
           pisum = pisum + pi_recv;
       } /* end for ea worker loop */


       /*  Calculate the average value of pi for this iteration */
       pi = (pisum + homepi)/(nworkers+1); /* +1 includes master's calc */
       /* Master calculates the average value of pi over all iterations */
       avepi = ((avepi * round_nbr) + pi)/(round_nbr + 1); 
       printf("   After %3d throws, average value of pi = %10.8f\n",
             (DARTS * (round_nbr + 1)),avepi);
   } /* end for each round loop */


   return (0);
}


/***********************************************************************
* Start of Worker Task
************************************************************************/
int worker(int id) {
   /* local variables */
   double my_pi;
   int round;
   /* Set seed for random number generator equal to task ID */


   srandom (id);


   /* Calculate pi using dartboard algorithm */
   for (round = 0; round < ROUNDS; round++) {
       my_pi = dboard(DARTS);
       out ("pi_results", round, my_pi);
   }


   return(0);
}


/*****************************************************************************
 * dboard
*****************************************************************************/
#define sqr(x)((x)*(x))
//long random(void);


double dboard(int darts) {
    double x_coord,       /* x coordinate, between -1 and 1  */
           y_coord,       /* y coordinate, between -1 and 1  */
           pi,            /* pi  */
           r;             /* random number between 0 and 1  */
    int score,            /* number of darts that hit circle */
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        n;
    unsigned long cconst; /* used to convert integer random number */
                          /* between 0 and 2^31 to double random number */
                          /* between 0 and 1  */


    cconst = 2 << (31 - 1);
    score = 0;


/***********************************************************************
 *     Throw darts at board.  Done by generating random numbers
 *     between 0 and 1 and converting them to values for x and y
 *     coordinates and then testing to see if they "land" in
 *     the circle."  If so, score is incremented.  After throwing the
 *     specified number of darts, pi is calculated.  The computed value
 *     of pi is returned as the value of this function, dboard.
 *     Note:  the seed value for rand() is set in pi_calc.
 ************************************************************************/


   for (n = 1; n <= darts; n++) {
       /* generate random numbers for x and y coordinates */
       r = (double)random()/cconst;
       x_coord = (2.0 * r) - 1.0;
       r = (double)random()/cconst;
       y_coord = (2.0 * r) - 1.0;


       /* if dart lands in circle, increment score */
       if ((sqr(x_coord) + sqr(y_coord)) <= 1.0)
          score++;
   }


   /* calculate pi */
   pi = 4.0 * (double)score/(double)darts;
   return(pi);
} 


##############################################################################
# Serial - pi_calc Makefile 
# FILE: make.ser_pi_calc.c
# DESCRIPTION:  See ser_pi_calc.c
# USE: make -f make.ser_pi_calc.c 
# LAST REVISED: 4/18/94 Blaise Barney
##############################################################################


CC        =       cc


pi_calc: ser_pi_calc.c
${CC} ser_pi_calc.c -o pi_calc 
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Matrix Multiply


Serial Version
/*****************************************************************************
* Serial Matrix Multiply - C Version
* FILE: ser_mm.c
* OTHER FILES: make.mm.c
* DESCRIPTION:  Sequential version of a matrix multiply
*   To make this a parallel processing progam this program would be divided into
*   two parts - the master and the worker section.  The master task would
*   distributes a matrix multiply  operation to numtasks-1 worker tasks.
*   NOTE1:  C and Fortran versions of this code differ because of the way
*     arrays are stored/passed.  C arrays are row-major order but Fortran
*     arrays are column-major order.
******************************************************************************
/
#include <stdio.h>


#define NRA 62 /* number of rows in matrix A */
#define NCA 15/* number of columns in matrix A */
#define NCB 7   /* number of columns in matrix B */


main() {
   int    i, j, k;/* misc */
   double a[NRA][NCA], /* matrix A to be multiplied */
          b[NCA][NCB],      /* matrix B to be multiplied */
          c[NRA][NCB];/* result matrix C */


   /* Initialize A, B, and C matrices */
   for (i=0; i<NRA; i++)
       for (j=0; j<NCA; j++)
          a[i][j]= i+j;


   for (i=0; i<NCA; i++)
       for (j=0; j<NCB; j++)
           b[i][j]= i*j;


   for (i=0;i<NRA;i++)
       for (j=0;j<NCB;j++)
           c[i][j] = 0.0;


   /* Perform matrix multiply */
   for (i=0;i<NRA;i++)
       for (j=0;j<NCB;j++)
           for (k=0;k<NCA;k++)
               c[i][j]+= a[i][k] * b[k][j];


   /* Okay, it's a trivial program */
   printf("Here is the result matrix\n");
   for (i=0; i<NRA; i++) { 
      printf("\n"); 
      for (j=0; j<NCB; j++) 
          printf("%6.2f   ", c[i][j]);
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   }
   printf ("\n");
}


##############################################################################
# Serial - Matrix Multiply Makefile 
# FILE: make.ser_mm.c
# DESCRIPTION:  See ser_mm.c
# USE: make -f make.ser_mm.c 
##############################################################################


CC        =       cc


mm: ser_mm.c
${CC} ser_mm.c -o mm 


Parallel Version
/*****************************************************************************
* LINDA Matrix Multiply - C Version
*
* FILE: clinda_mm.cl
* OTHER FILES: make.clinda_mm.cl
* DESCRIPTION:
*   In this code, the master task distributes a matrix multiply
*   operation to n worker tasks.
*   NOTE:  C and Fortran versions of this code differ because of the way
*   arrays are stored/passed.  C arrays are row-major order but Fortran
*   arrays are column-major order.
*****************************************************************************/


#include <stdio.h>
#define NRA 62
#define NCA 15
#define NCB 7
#define MAXWORKERS 20


real_main () {
   int   id;
   int   numworkers, nbr_rows, offset,i,j,k;
   int   extra;
   int   worker();   /* worker function */
   int   work_count; /* number of work assignments made */
   double a[NRA][NCA], b[NCA][NCB], c[NRA][NCB], results[NRA][NCB];


   /* ************************ initializations ********************************
   * Get the number of tasks from the user.  


**************************************************************************/
   numworkers=0;


   while ((numworkers > MAXWORKERS) || (numworkers < 1)) {
       printf ("Enter number of workers between 1 and %d\n ", MAXWORKERS);
       scanf ("%d", &numworkers);
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   }
      
   /************************* master task*************************************/
   /*     Initialize A and B  */ 


   for (i=0; i < NRA; i++) {
       for (j=0; j < NCA; j++) {
           a[i][j] = i + j;
       }
   } 


   for (i=0; i < NCA; i++) {
       for (j=0; j < NCB; j++){
           b[i][j] = i * j;
       }
   } 


   /* put out the arrays for the tasks to read */


   out("array_b", b);
   out("array_a", a);
 
   /*  Put out work for them to do - ten columns at a time */ 


   work_count=0; 
   nbr_rows =  10;
   offset = 0;
   extra = NRA % nbr_rows;
   if (extra > 0) {
      out ("offset", offset);
      out ("array_data", offset, extra);
      offset = offset + extra; 
      work_count++;
   } else {
     out ("offset", offset);
   }


   while (offset < NRA) {
      out ("array_data", offset, nbr_rows );
      offset = offset + nbr_rows;
      work_count++;
   }


   /* Start up worker tasks  */ 


   id = 1;
   while (id <= numworkers) {
      printf ("Starting task %d \n", id);
      eval ("worker", worker());
      id++;
   }


   /* Receive results from worker tasks */
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   for (k=1;k<=work_count;k++) {
      in ("results", ?offset, ?nbr_rows, ?c);
      /* put results into results array */
      for (i=offset; i<nbr_rows+offset; i++) {
          for (j=0;j<NCB;j++) {
              results[i][j] = c[i][j];
          }
      }
   }


   /* Print results */ 


   for (i=0;i<NRA;i++) {
       for (j=0;j<NCB;j++) {
       printf ("%.2f  ", results[i][j]);
   }
   printf ("\n");
}
 


}
/*************************** worker task ************************************/


int worker() {
   int offset,rows,length;
   int next_offset;
   int i, j, k;
   double  a[NRA][NCA], b[NCA][NCB], c[NRA][NCB];


   /* First read in the a and b arrays */


   rd ("array_a", ?a);
   rd ("array_b", ?b);


   /* This is the head of an infinite loop over tasks */


   while (1) { 


   /* See if there is any work out there to do */
   in ("offset", ?offset);


   if (offset == -1) { 
      out("offset", -1);
      return (0); 
   }


   /* There is still data to process.   Receive matrix data from master task */


   in ("array_data", offset, ?rows);


   /* Update offset for the next guy */


   if ((offset + rows) < NRA)
      next_offset = offset + rows; 
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   else
      next_offset = -1;


   out ("offset", next_offset);


   /* Do matrix multiply */
   for (i=offset;i<rows+offset;i++)
       for (j=0; j<NCB;j++) {
           c[i][j] = 0.0;
           for (k=0;k<NCA;k++)
                c[i][j] = c[i][j] + a[i][k] * b[k][j];
   }


   /* Send results back to master task */
   out ("results", offset, rows, c);


   } /* end while loop */


   /* It's all over */


   return(0);
}


##############################################################################
# Linda Matrix Multiply Makefile
# FILE: make.clinda_mm.cl
# DESCRIPTION: see clinda_mm.cl  
# USE: make -f make.clinda_mm.cl 
# Note: To compile using tuple scope use -linda tuple_scope compiler flags
# (CCFLAGS = -linda tuple_scope) 
##############################################################################
#
CC        =       clc
CFLAGS = 


mm:     clinda_mm.cl
${CC} ${CFLAGS} clinda_mm.cl -o  mm
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Concurrent Wave Equation


Serial Version


/* ------------------------------------------------------------------------
 * SERIAL Concurrent Wave Equation - C Version
 * FILE: ser_wave.c
 * OTHER FILES: make.wave.c
 * DESCRIPTION:
 *   This program implements the concurrent wave equation described 
 *   in Chapter 5 of Fox et al., 1988, Solving Problems on Concurrent
 *   Processors, vol 1.  
 *
 *   A vibrating string is decomposed into points.  In the parallel
 *   version each processor is responsible for updating the amplitude 
 *   of a number of points over time.
 *
 *   At each iteration, each processor exchanges boundary points with
 *   nearest neighbors.  This version uses low level sends and receives
 *   to exchange boundary points.
* ------------------------------------------------------------------------*/


#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <time.h>


#define MAXPOINTS 1000
#define MAXSTEPS 10000
#define MINPOINTS 20
#define PI 3.14159265


void init_param(void);
void init_line(void);
void update (void);


int nsteps,                 /* number of time steps */
    tpoints,      /* total points along string */
    rcode;                  /* generic return code */
double values[MAXPOINTS+2], /* values at time t */
       oldval[MAXPOINTS+2], /* values at time (t-dt) */
       newval[MAXPOINTS+2]; /* values at time (t+dt) */


/*  ------------------------------------------------------------------------
 * Obtains input values from user
 *  ------------------------------------------------------------------------ */


void init_param(void) {
   char tchar[8];


   /* set number of points, number of iterations */
   tpoints = 0;
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   nsteps = 0;
   while ((tpoints < MINPOINTS) || (tpoints > MAXPOINTS)) {
      printf("Enter number of points along vibrating string\n");
      scanf("%s", tchar);
      tpoints = atoi(tchar);
      if ((tpoints < MINPOINTS) || (tpoints > MAXPOINTS))
         printf("enter value between %d and %d\n", MINPOINTS, MAXPOINTS);
   }


   while ((nsteps < 1) || (nsteps > MAXSTEPS)) {
      printf("Enter number of time steps\n");
      scanf("%s", tchar);
      nsteps = atoi(tchar);
     if ((nsteps < 1) || (nsteps > MAXSTEPS))
        printf("enter value between 1 and %d\n", MAXSTEPS);
   }


   printf("points = %d, steps = %d\n", tpoints, nsteps);
}


/*  ------------------------------------------------------------------------
 *     All processes initialize points on line
 *  --------------------------------------------------------------------- */
void init_line(void) {
   int i, j, k;
   double x, fac;


   /* calculate initial values based on sine curve */


   fac = 2.0 * PI;
   k = 0; 
   for (j = 1; j <= tpoints; j++, k++) {
        x = (double)k/(double)(tpoints - 1);
        values[j] = sin (fac * x);
   } 
  for (i = 1; i <= tpoints; i++) oldval[i] = values[i];


}


/*  -------------------------------------------------------------------------
 *      Calculate new values using wave equation
 * -------------------------------------------------------------------------*/
void do_math(int i) {
   double dtime, c, dx, tau, sqtau;


   dtime = 0.3;
   c = 1.0;
   dx = 1.0;
   tau = (c * dtime / dx);
   sqtau = tau * tau;
   newval[i] = (2.0 * values[i]) - oldval[i] 
              + (sqtau * (values[i-1] - (2.0 * values[i]) + values[i+1]));
}
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/*  -------------------------------------------------------------------------
 * Update the points a specified number of times 
 * -------------------------------------------------------------------------*/
void update() {
   int i, j, tpts;


   /* update values for each point along string */
   /* update points along line */
  for (j = 1; j <= tpoints; j++) {
      /* global endpoints */
      if ((j == 1) || (j  == tpoints))
         newval[j] = 0.0;
      else
         do_math(j);
  }


  for (j = 1; j <= tpoints; j++) {
      oldval[j] = values[j];
      values[j] = newval[j];
  }
          


  /* print it out for validation */


  tpts = (tpoints < 10) ? tpoints: 10; 
  printf("first %d points (for validation):\n", tpts);
  for (i = 0; i < tpts; i++) printf("%4.2f  ", values[i]);
      printf("\n");
}


/*  ------------------------------------------------------------------------
 * Main program
 *  ------------------------------------------------------------------------ */
main() {
   int left, right;


   /* get program parameters and initialize wave values */
   init_param();
   init_line();


   /* update values along the line for nstep time steps */
   update();


   return 0;
}
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##############################################################################
# SERIAL Wave Equation  Makefile 
# FILE: make.ser_wave.c
# DESCRIPTION:  See ser_wave.c
# USE: make -f make.ser_wave.c 
##############################################################################


CC        =       cc


wave: ser_wave.c
${CC} ser_wave.c -o wave -lm


Parallel Version
/* -----------------------------------------------------------------------
*           Linda Concurrent Wave Equation  - C Example
*
*  FILE: clinda_wave.cl 
*  OTHER FILES: draw_wave.c, make.clinda_wave.cl
*
*  DESCRIPTION:
*    This program implements the concurrent wave equation described 
*    in Chapter 5 of Fox et al., 1988, Solving Problems on Concurrent
*    Processors, vol 1.  
*
*    A vibrating string is decomposed into points.  Each processor is 
*    responsible for updating the amplitude of a number of points over
*    time.
*
*    At each iteration, each processor exchanges boundary points with
*    nearest neighbors.  This version demonstrates domain decomposition 
*
*   Note: use compile option -lm
*  ------------------------------------------------------------------------ 
*  ------------------------------------------------------------------------ 
*  Explanation of constants  
*    values(0:1001)   = values at time t
*    oldval(0:1001)   = values at time (t-dt)
*    newval(0:1001)   = values at time (t+dt)
*  ------------------------------------------------------------------------ 
*/


#include <stdio.h>
#include <math.h>


#define MAXPOINTS 1000
#define MAXSTEPS  10000
#define NWORKERS  4
#define PI 3.14159265
 
/*     Routine for creating the X graph of the wave */
// extern void draw_wave();


double values[MAXPOINTS+2],newval[MAXPOINTS+2],oldval[MAXPOINTS+2] ;
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real_main () {
   int tpoints; /* total points on the line */
   int nsteps;  /* number of time steps */
   int npts,first,i,k;
   int nmin, nleft;
   int worker();


   tpoints = 0;
   nsteps = 0;
 
   while ((tpoints < NWORKERS) || (tpoints > MAXPOINTS)) {
      printf("Enter number of points along vibrating string\n");
      scanf("%d",&tpoints);
      if ((tpoints < NWORKERS) || (tpoints > MAXPOINTS)) {
         printf("Enter value between %d and %d\n", NWORKERS, MAXPOINTS);
      }
   } /* end while */


   while ((nsteps < 1) || (nsteps > MAXSTEPS)) {
      printf ("Enter number of times steps\n");
      scanf ("%d", &nsteps);
      if ((nsteps < 1) || (nsteps > MAXSTEPS)) {
         printf("Enter a value between 1 and %d\n", MAXSTEPS);
      }
   } /* end while */


   /* Put out total points, and time steps  */


   out ("globals", tpoints, nsteps, NWORKERS);


   /* Assign chunks of work */


   nmin = tpoints/NWORKERS;
   nleft=tpoints % NWORKERS;


   k = 0;
   for (i = 1; i <= NWORKERS; i++) {
       npts = (i <= nleft) ? nmin +1 : nmin;
       first = k + 1;
       eval ("worker", worker(i,first,npts));
       k=k+npts;     
   }
 
   /* Get results */
   get_results (tpoints,NWORKERS);
}
      


int worker (int id, int first, int npoints) {
   int left, right;
   int tpoints, nsteps, nwrkers; 
   double *ret_val;
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   /* get global values */


   printf("%d: first = %d, npoints = %d\n", id, first, npoints);
   rd ("globals", ?tpoints, ?nsteps, ?nwrkers);


   /* Initialize line  */


   init_line (tpoints, npoints, first);


   /* Determine left and right neighbors */


   if (id == nwrkers) 
      right = 1;
   else 
      right = id + 1;


   if (id == 1) 
      left = nwrkers; 
   else 
      left = id - 1;


   /*  Update the line */
   update(left,right,tpoints,nsteps,npoints,first,id); 


   /* Output the results */


   /* the first value ([0]) was only used for passing data to 
      neigbors so reset array to send back only values we are interested in */


   ret_val = values+1;
   out ("results", id,first, ret_val:npoints);


}


/*  ------------------------------------------------------------------------
 *     Initialize points on line
 *  -----------------------------------------------------------------------
*/


int init_line (int tpoints, int npoints, int first) {
   /* local variables */
   int i, j, k;
   double x, fac;


   /* Calculate initial values based on sine curve */
   fac = 2.0 * PI;
   k = first-1;
   for (j=1; j <= npoints; j++, k++) {
       x = (double)k/(double)(tpoints - 1);
       values[j] = sin (fac * x);
   }


   for (i=1; i<= npoints; i++) {
       oldval[i] = values[i];
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   }
}


/*  -------------------------------------------------------------------------
 *     Update all values along line a specified number of times 
 *  ------------------------------------------------------------------------- 
 */
 
int update(int left, int right, int tpoints, int nsteps, int npoints,


int first, int id) {
   /* local variables */
   double dtime, c, dx, tau, sqtau;
   int iteration, i, j;


   /* Update values along the wave for nstep time steps */
   dtime = 0.3;
   c = 1.0;
   dx = 1.0;
   tau = (c * dtime / dx);
   sqtau = tau * tau;


   /* Update values for each point along string */


   for (i=1; i<= nsteps; i++) {
       iteration = i;
       /* Exchange data with "left-hand" neighbor */
       if (first != 1) {
          out("RtoL",left, iteration, values[1]);
          in("LtoR",id, iteration, ?values[0]);
       } /* end if */


      /* Exchange data with "right-hand" neighbor */
      if (first+npoints-1 != tpoints) {
         out("LtoR",right,iteration, values[npoints]);
         in("RtoL",id,iteration, ?values[npoints+1]);
      } /* end if */ 


      /* Update points along line */
      for (j=1; j <= npoints; j++) {
          /* Global endpoints */
          if ((first+j-1 == 1) || (first+j-1 == tpoints)) {
             newval[j] = 0.0;
          }
          else {
             /* Use wave equation to update points */
             newval[j] = (2.0 * values[j]) - oldval[j]
                + (sqtau * (values[j-1] - (2.0 * values[j]) 
                + values[j+1]));
          } /* end if */
      } /* end npoints for */


      for (j=1; j <= npoints; j++) {
          oldval[j] = values[j];
          values[j] = newval[j];
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      }
   } /* end nsteps for loop */


   return(0);
}


/*  ------------------------------------------------------------------------
 *     Receive results from workers and print
 *  ------------------------------------------------------------------------ 
*/
int get_results (int tpoints, int nworkers) {
   /* local variables */
   int i, j, k, tpts, first, length; 
   double results[1000]; 
 
   /* Store worker's results in results array */
   for (i=1; i <= nworkers; i++) {
       /* Receive number of points and first point */
       in ("results", i, ?first,?results:length);
       /* put it into the results array */
       first = first - 1; /* adjust first to array starting at 0 */
       j=0;
       for (k=first; k < length + first; k++, j++) {
           values[k] = results[j];
       }
   }


   tpts = (tpoints < 10) ? tpoints : 10;


   /* Print something out for validation */


   printf ("first  %d points (for validation): \n", tpts);
   for (i = 0; i < tpts; i++) printf ("%4.2f  ", values[i]);
   printf ("\n");


   /* Display results with draw_wave routine */


   // draw_wave (&values);


   return (0);
}
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##############################################################################
# Linda Concurrent Wave Equation Program Makefile 
# FILE: make.clinda_wave.cl
# DESCRIPTION: see clinda_wave.cl  
# USE: make -f make.clinda_wave.cl 
# Note: To compile using tuple scope use -linda tuple_scope compiler option
#       (CFLAGS = -lm -linda tuple_scope)
##############################################################################
#
CC        =       clc
CFLAGS = -lm 


wave:     clinda_wave.cl
${CC} ${CFLAGS} clinda_wave.cl -o  wave


2D Heat Equation


Serial Version
/****************************************************************************
 * Serial HEAT2D Example - C Version
 * FILE: heat2D.c
 * OTHER FILES:  
 * DESCRIPTIONS:  This example is based on a simplified 
 * two-dimensional heat equation domain decomposition.  The initial 
 * temperature is computed to be high in the middle of the domain and 
 * zero at the boundaries.  The boundaries are held at zero throughout 
 * the simulation.  During the time-stepping, an array containing two 
 * domains is used; these domains alternate between old data and new data.
****************************************************************************/


#include <stdio.h>
#define NXPROB 11
#define NYPROB 11
struct Parms
{ 
  float cx;
  float cy;
  int nts;
} parms = {0.1, 0.1, 50};


main() {
   float u[2][NXPROB][NYPROB];
   int ix, iy, iz, it;
   void inidat(), prtdat(), update();


   /************************************************************************
   **  Initialize grid.
   *************************************************************************/
   inidat(NXPROB, NYPROB, u);
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   prtdat(NXPROB, NYPROB, u, "initial.dat");
   for (ix = 0; ix <= NXPROB-1; ix++) {
       u[1][ix][0] = u[0][ix][0];
       u[1][ix][NYPROB-1] = u[0][ix][NYPROB-1];
   }


   for (iy = 0; iy <= NYPROB-1; iy++) {
       u[1][0][iy] = u[0][0][iy];
       u[1][NXPROB-1][iy] = u[0][NXPROB-1][iy];
   }


   /***********************************************************************
   **  Iterate over all timesteps.
   ************************************************************************/
   iz = 0;
   for (it = 1; it <= parms.nts; it++) {
       update(NXPROB, NYPROB, &u[iz][0][0], &u[1-iz][0][0]);
       iz = 1 - iz;
   }


   prtdat(NXPROB, NYPROB, &u[iz][0][0], "final.dat");
}


/****************************************************************************
 *  subroutine update
 ****************************************************************************/
void update(int nx, int ny, float *u1, float *u2) { 


int ix, iy;


   for (ix = 1; ix <= nx-2; ix++) {
       for (iy = 1; iy <= ny-2; iy++) {
           *(u2+ix*ny+iy) = *(u1+ix*ny+iy)  + 


       parms.cx * (*(u1+(ix+1)*ny+iy) + *(u1+(ix-1)*ny+iy) - 
   2.0 * *(u1+ix*ny+iy)                      ) +


       parms.cy * (*(u1+ix*ny+iy+1) + *(u1+ix*ny+iy-1) - 
   2.0 * *(u1+ix*ny+iy)                  );


       }
   }
}


/*****************************************************************************
 *  subroutine inidat
 
*****************************************************************************/
void inidat(int nx, int ny, float *u1) {


int ix, iy;


   for (ix = 0; ix <= nx-1; ix++) {
       for (iy = 0; iy <= ny-1; iy++) {
           *(u1+ix*ny+iy) = (float)(ix * (nx - ix - 1) * iy * (ny - iy - 1));
       }
   }
}
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/**************************************************************************
 * subroutine prtdat
 **************************************************************************/
void prtdat(int nx, int ny, float *u1, char *fnam) {


int ix, iy;
FILE *fp;


   fp = fopen(fnam, "w");
   for (iy = ny-1; iy >= 0; iy--) {
       for (ix = 0; ix <= nx-1; ix++) {
          fprintf(fp, "%8.3f", *(u1+ix*ny+iy));
          if (ix != nx-1)
             fprintf(fp, " ");
          else
             fprintf(fp, "\n");
       }
   }
   fclose(fp);
}


##############################################################################
# Serial - heat2D Makefile 
# FILE: make.ser_heat2D.c
# DESCRIPTION:  See ser_heat2D.c
# USE: make -f make.ser_heat2D.c 
##############################################################################


CC        =       cc


heat2D: ser_heat2D.c
${CC} ser_heat2D.c -o heat2D 


Parallel Version
/*****************************************************************************
*               LINDA Example - Heat Eqaution Domain Decomposition - C Version
*
* FILE: clinda_heat2d.cl
* OTHER FILES: make.clinda_heat2d.cl
* DESCRIPTION:
*
* This example is based on a simplified two-dimensional heat equation 
* domain decomposition.  The initial temperature is computed to
* be high in the middle of the domain and zero at the boundaries.  The 
* boundaries are held at zero throughout the simulation.  During the 
* time-stepping, an array containing two domains is used; these domains 
* alternate between old data and new data.
*
* The parallel version decomposes the domain into tiles, and each tile is
* advanced in time by a separate process.  The master process performs as a
* worker also.  NXPROB, NYPROB, and NXTILE may be varied to study performance;
* note that the code assumes that NXTILE evenly divides (NXPROB-2).  This
* quotient is the number of parallel processes.  In the C version, the 
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* tiles are actually strips.  This is because C-Linda does not have the rich 
* Fortran-90 array section notation that is available in Fortran-Linda.  
*
* Two data files are produced: an initial data set and a final data set.
* An X graphic of these two states displays after all calculations have
* completed.
****************************************************************************/
#include <stdio.h>
#define NXPROB 11
#define NYPROB 11
#define NXTILE 3
struct Parms
{ 
  float cx;
  float cy;
  int nts;
} parms = {0.1, 0.1, 50};


real_main() {
   float u[NXPROB][NYPROB];
   int nwrkers, ntile, ixmin, ixmax, idum, i, ix, iz, it, worker();
   void inidat(), prtdat();


   /*
   **  Initialize grid.
   */
   printf("Grid size: X= %d  Y= %d  Time steps= %d\n",NXPROB,NYPROB,parms.nts);
   printf("Initializing grid and writing initial.dat file...\n");
   inidat(NXPROB, NYPROB, u);


   prtdat(NXPROB, NYPROB, u, "initial.dat");


   /*
   ** Compute tile extents, putting grid data into Tuplespace.
   ** Create workers for all but the right-most tile.
   */
   out("struct parms", parms);
   nwrkers = 1;
   ntile = 0;
   for (ix = 1; ix <= NXPROB-2; ix += NXTILE) {
      ixmin = ix;
      ixmax = ix + NXTILE - 1;
      ntile++;
     if (ixmax < NXPROB-2) {
        /* start up the workers */
        printf ("starting worker %d\n", nwrkers);
        eval("worker", worker(ixmin, ixmax));
        nwrkers++;
     }
     /* put out the initial data into tuple space */
     out("initial data", ixmin, &u[ixmin][0]:NXTILE*NYPROB);
   }


   /*
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   ** Put grid boundary data into Tuplespace.
   */
   out("left", &u[0][0]:NYPROB);
   out("right", &u[NXPROB-1][0]:NYPROB);


   /*
   ** Call a worker to compute values for right-most tile.
   */
   idum = worker(ixmin, ixmax);


   /*
   ** Gather results from Tuplespace.
   */
   for (i = 1; i <= ntile; i++) {
      in("result id", ?ixmin, ?ixmax);
      in("result", ixmin, ?&u[ixmin][0]:);
   }


   printf("Writing final.dat file and generating graph...\n");
   prtdat(NXPROB, NYPROB, u, "final.dat");
}


/********************************************************************
 * Worker routine
 *******************************************************************/
int worker(int ixmin, int ixmax) {


   float utile[2][NXTILE+2][NYPROB];
   int ix, iy, iz, it;
   void step();


   /*
   ** Get parameters and initial data from Tuplespace.
   */
   rd("struct parms", ?parms);
   in("initial data", ixmin, ?&utile[0][1][0]:);


   /*
   ** Set edges of utile to grid boundary values if appropriate.
   */
   if (ixmin == 1) {
      in(  "left", ?&utile[0][0][0]:);
      for (iy = 0; iy <= NYPROB-1; iy++) {
         utile[1][0][iy] = utile[0][0][iy];
      }
   }


   if (ixmax == NXPROB - 2) {
      in( "right", ?&utile[0][NXTILE+1][0]:);
      for (iy = 0; iy <= NYPROB-1; iy++) {
         utile[1][NXTILE+1][iy] = utile[0][NXTILE+1][iy];
      }
   }
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   for (ix = 0; ix <= NXTILE+1; ix++) {
      utile[1][ix][0] = utile[0][ix][0];
      utile[1][ix][NYPROB-1] = utile[0][ix][NYPROB-1];
   }


   /*
   **  Iterate over all timesteps.
   */
   iz = 0;
   for (it = 1; it <= parms.nts; it++) {
      step(it-1, ixmin, ixmax, &utile[iz][0][0], &utile[1-iz][0][0]);
      iz = 1 - iz;
   }


   /*
   ** Put results into Tuplespace.
   */
   out("result id", ixmin, ixmax);
   out("result", ixmin, &utile[iz][1][0]:NXTILE*NYPROB);
}


/***********************************************************************
 * step 
 **********************************************************************/
void step(int it, int ixmin, int ixmax, float u1[NXTILE+2][NYPROB], 


float u2[NXTILE+2][NYPROB]) {
void update();


   /*
   ** Put boundary data into Tuplespace.
   */
   if (ixmin != 1) {
      out( "west", it, ixmin, &u1[     1][0]:NYPROB);
   }


   if (ixmax != NXPROB-2) {
      out( "east", it, ixmax, &u1[NXTILE][0]:NYPROB);
   }


   /*
   ** Get boundary data from Tuplespace.
   */
   if (ixmin != 1) {
      in( "east", it, ixmin-1, ?&u1[       0][0]:);
   }


   if (ixmax != NXPROB-2) {
      in( "west", it, ixmax+1, ?&u1[NXTILE+1][0]:);
   }


   /*
   ** Update solution.
   */
   update(NXTILE+2, NYPROB, u1, u2);
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}


/********************************************************************
 * update
 ********************************************************************/
void update(int nx, int ny, float *u1, float *u2) {


int ix, iy;


   for (ix = 1; ix <= nx-2; ix++) {
      for (iy = 1; iy <= ny-2; iy++) {
         *(u2+ix*ny+iy) = *(u1+ix*ny+iy)  + 


       parms.cx * (*(u1+(ix+1)*ny+iy) + *(u1+(ix-1)*ny+iy) - 
   2.0 * *(u1+ix*ny+iy)                      ) +


       parms.cy * (*(u1+ix*ny+iy+1) + *(u1+ix*ny+iy-1) - 
   2.0 * *(u1+ix*ny+iy)                  );


      }
   }
}


/***********************************************************************
 * inidat
 ***********************************************************************/
void inidat(int nx, int ny, float *u1) {


   int ix, iy;


   for (ix = 0; ix <= nx-1; ix++) {
      for (iy = 0; iy <= ny-1; iy++) {
         *(u1+ix*ny+iy) = (float)(ix * (nx - ix - 1) * iy * (ny - iy - 1));
      }
   }
}


/**************************************************************************
 * prtdat
 **************************************************************************/
void prtdat(int nx, int ny, float *u1, char *fnam) {


   int ix, iy;
   FILE *fp;


   fp = fopen(fnam, "w");
   for (iy = ny-1; iy >= 0; iy--) {
      for (ix = 0; ix <= nx-1; ix++) {
         fprintf(fp, "%8.3f", *(u1+ix*ny+iy));
        if (ix != nx-1)
           fprintf(fp, " ");
        else
           fprintf(fp, "\n");
      }
   }
   fclose(fp);
}
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##############################################################################
# FILE: make.clinda_heat2D.cl
# DESCRIPTION:  see clinda_heat2D.cl 
# USE: make -f make.clinda_heat2D.cl 
# Note: To compile using tuple scope use -linda tuple_scope compiler option
#       (CFLAGS = -linda tuple_scope)
##############################################################################


CC      =       clc
OBJ     =       heat2D
SRC     =       clinda_heat2D.cl
XLIBS   =       
CFLAGS = 


${OBJ}: ${SRC} 
${CC} ${CFLAGS} ${SRC} ${INCLUDE} ${LIBS} ${XLIBS} -o ${OBJ}
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